Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (9): 3422-3436.DOI: 10.13196/j.cims.2024.0016

Previous Articles     Next Articles

Cloud manufacturing service composition optimization method considering the energy consumption and service flexibility

LI Xiaobin1,2+,XIONG Chang1,2,YIN Chao1,2,JIANG Pei1,2   

  1. 1.College of Mechanical and Vehicle Engineering,Chongqing University
    2.State Key Laboratory of Mechanical Transmission For Advanced Equipment,Chongqing University
  • Online:2025-09-30 Published:2025-10-15
  • Supported by:
    Project supported by the National Key R&D Program,China(No.2022YFB3305700),the National Natural Science Foundation,China(No.52075060,51875065),and the Fundamental Research Funds for the Central Universities,China(No.2023CDJXY-021).

考虑能耗和服务组合柔性的云制造服务组合方法

李孝斌1,2+,熊昌1,2,尹超1,2,江沛1,2   

  1. 1.重庆大学机械与运载工程学院
    2.重庆大学高端装备机械传动全国重点实验室
  • 作者简介:
    +李孝斌(1987-),男,重庆人,副教授,博士,博士生导师,研究方向:智能制造、网络协同制造、大数据、物联网、人工智能等新一代信息技术在离散制造行业中的应用,通讯作者,E-mail:xiaobin_lee@cqu.edu.cn;

    熊昌(1997-),男,湖北麻城人,硕士研究生,研究方向:云制造服务管理,E-mail:2250192427@qq.com;

    尹超(1974-),男,四川资中人,教授,博士,博士生导师,研究方向:智能制造、网络协同制造、制造系统工程、新一代信息技术及应用, E-mail:ych925@cqu.edu.cn;

    江沛(1985-),男,重庆人,副教授,博士,博士生导师,研究方向:机器人技术、绿色制造、智能制造等,E-mail:peijiang@cqu.edu.cn。
  • 基金资助:
    国家重点研发计划资助项目(2022YFB3305700);国家自然科学基金资助项目(52075060,51875065);中央高校基本科研业务费资助项目(2023CDJXY-021)。

Abstract: To improve the service composition flexibility and reduce the service energy consumption in the operation of cloud manufacturing services,a seven-dimensional cloud manufacturing service evaluation index system was established,including service execution time,service delivery quality,service cost,availability,reliability,service energy consumption and service composition flexibility.Then,a cloud service composition model with the optimal service quality,minimum energy consumption and maximum service composition flexibility was constructed.Combining the advantages of particle swarm algorithm and clone selection algorithm,and the strategies of Lévy flight and chaotic mapping,a multi-objective particle swarm and clone selection fusion algorithm based on adaptive mesh technology was proposed to solve the constructed model.Finally,the feasibility and effectiveness of the proposed method were verified by comparing with NSGA-II,MOPSO and MOGWO algorithms in benchmarking problems and a mould manufacturing case.

Key words: cloud manufacturing, service composition, service flexibility, service energy consumption

摘要: 为提高云制造服务组合的柔性并降低制造任务执行过程中的运行能耗,建立包括服务执行时间、服务交付质量、服务成本、可用性、可靠性、服务能耗和服务组合柔性七维目标的云制造服务评价指标体系,构建以服务质量最优、能耗最低、服务组合柔性最大为优化目标的云制造服务组合优选模型。在此基础上,基于粒子群算法和克隆选择算法各自的优势,融合莱维飞行、混沌映射等策略,提出基于自适应网格技术的多目标粒子群和克隆选择融合算法对所构模型进行求解。最后,在基准测试问题和模具制造案例中,通过与NSGA-Ⅱ、MOPSO和MOGWO算法进行对比,验证所提方法的可行性和有效性。

关键词: 云制造, 服务组合, 服务柔性, 服务能耗

CLC Number: