Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (8): 2923-2935.DOI: 10.13196/j.cims.2023.BPM23

Previous Articles     Next Articles

Location aware service composition optimization for production factor resource under industrial Internet

XIE Runbin1,2,3,KANG Guosheng1,2,LIU Jianxun1,2+,WEN Yiping1,2,DING Linghang1,2   

  1. 1.Hunan Provincial Key Lab for Services Computing and Novel Software Technology,Hunan University of Science and Technology
    2.School of Computer Science and Engineering,Hunan University of Science and Technology
    3.China Academy of Information and Communications Technology
  • Online:2024-08-31 Published:2024-09-06
  • Supported by:
    Project supported by the National Key R&D Program,China(No.2020YFB1707602),the National Natural Science Foundation,China(No.61872139,62177014),the Natural Science Foundation of Hunan Province,China(No.2022JJ30262),and the Educational Department of Hunan Province,China(No.20B244,20B222).

工业互联网环境下位置感知的生产要素资源服务组合优化

谢润彬1,2,3,康国胜1,2,刘建勋1,2+,文一凭1,2,丁领航1,2   

  1. 1.湖南科技大学服务计算与软件新技术湖南省重点实验室
    2.湖南科技大学计算机科学与工程学院
    3.中国信息通信研究院
  • 作者简介:
    谢润彬(1998-),男,湖南益阳人,硕士研究生,研究方向:工业互联网、服务计算,E-mail:robbiexiee@gmail.com;

    康国胜(1985-),男,湖南郴州人,讲师,博士,研究方向:服务计算、业务流程管理,E-mail:guoshengkang@gmail.com;

    +刘建勋(1970-),男,湖南衡阳人,教授,博士,研究方向:服务计算、业务流程管理、代码大数据,通讯作者,E-mail:ljx529@gmail.com;

    文一凭(1981-),男,湖南祁阳人,教授,博士,研究方向:业务流程管理,E-mail:ypwen81@gmail.com;

    丁领航(1995-),男,湖南湘潭人,硕士研究生,研究方向:服务计算,E-mail:linghangding@gmail.com。
  • 基金资助:
    国家重点研发计划资助项目(2020YFB1707602);国家自然科学基金资助项目(61872139,62177014);湖南省自然科学基金资助项目(2022JJ30262);湖南省教育厅资助项目(20B244,20B222)。

Abstract: The Industrial Internet combines industrial systems with Internet techniques to significantly improve production efficiency and reduce cost by cooperating with intelligent devices.Under the Industrial Internet environment,a production process usually consists of multiple tasks,and one or more types of product factors are needed to finish a task.Thus,the service composition under industrial application is complex and challenging compared with traditional service composition under the Internet environment.To solve the problem of service composition for production factor resource under Industrial Internet,the key concepts was defined,and was modeled as a multi-objective optimization problem.To derive the optimal service composition solution,a hybrid optimization algorithm was proposed by combining the advantages of Teaching Learning Based Optimization algorithm(TLBO)and Tabu Search algorithm(TS),which named TLBO-TS.A series of extended experiments was conducted,and the result showed that the TLBO-TS method had better optimality.

Key words: industrial Internet, production factor resource, service composition, hybrid algorithm, multi-objective optimization

摘要: 工业互联网将工业系统与互联网技术相结合,通过与智能设备的配合显著提高生产效率、降低生产成本。在工业互联网环境下,一个生产过程通常由多个子任务组成,同时一个子任务的完成需要多个或多种生产要素资源。与互联网环境下的传统服务组合相比,工业应用下的服务组合更为复杂且具有挑战性。为解决工业互联网环境下生产要素资源的服务组合优化问题,本文定义了该问题的关键概念,并将其建模为一个多目标优化问题。其次,为得到最优的服务组合解,结合教学优化算法(TLBO)和禁忌搜索算法(TS)的优点,提出一种混合的多目标优化算法,称为TLBO-TS。最后,进行了一系列的扩展实验。实验结果验证了TLBO-TS算法的优越性。

关键词: 工业互联网, 生产要素资源, 服务组合, 混合算法, 多目标优化

CLC Number: