Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (8): 2697-2707.DOI: 10.13196/j.cims.2023.BPM12

Previous Articles     Next Articles

Energy consumption aware method for cloud manufacturing service selection and scheduling optimization

PENG Gaoxian1,WEN Yiping1+,LIU Jianxun1,KANG Guosheng1,ZHOU Minhao2   

  1. 1.Hunan Provincial Key Laboratory of Knowledge Processing and Networked Manufacture,Hunan University of Science and Technology
    2.Xiangtan Iron & Steel Group Co.,Ltd.
  • Online:2024-08-31 Published:2024-09-04
  • Supported by:
    Project supported by the National Key R&D Program,China(No.2020YFB1707600),the National Natural Science Foundation,China(No.62177014),and the Educational Department of Hunan Province,China(No.20B222,20C0487).

能耗感知的云制造服务选择与调度优化方法

彭高贤1,文一凭1+,刘建勋1,康国胜1,周旻昊2   

  1. 1.湖南科技大学知识处理与网络化制造湖南省普通高校重点实验室
    2.湖南华菱湘潭钢铁有限公司
  • 作者简介:
    彭高贤(1990-),男,湖南汨罗人,博士研究生,研究方向:业务过程管理、智能优化算法,E-mail:penggaoxian@gmail.com;

    +文一凭(1981-),男,湖南祁阳人,教授,博士,研究方向:云计算与大数据、智慧教育、数据挖掘与智能优化、业务过程管理与工作流技术,通讯作者,E-mail:ypwen81@gmail.com;

    刘建勋(1970-),男,湖南衡阳人,教授,博士,研究方向:服务计算与云计算、大数据与BPM、GIS与移动计算等,E-mail:ljx529@gmail.com;

    康国胜(1985-),男,湖南郴州人,讲师,博士,研究方向:服务计算、业务流程管理、数据挖掘、工业互联网、人工智能、大数据,E-mail:guoshengkang@gmail.com;

    周旻昊(1977-),男,湖南道县人,硕士,研究方向:人工智能、工作流与业务过程管理技术,E-mail:zhouminhao@163.com。
  • 基金资助:
    国家重点研发计划资助项目(2020YFB1707600);国家自然科学基金资助项目(62177014);湖南省教育厅资助项目(20B222,20C0487)。

Abstract: Cloud Manufacturing Service Selection and Scheduling(CMSSS)problem has attracted much attention in optimizing resource allocation and meeting user requirements.However,most existing methods pay insufficient consideration to the preheating process of manufacturing equipment,resulted in wasted energy.To reduce manufacturing energy consumption and guarantee Quality of Service(QoS),a multi-objective optimization model for CMSSS was established,the preheating energy consumption of manufacturing service equipment was quantified by a task cohesion degree model,and an Energy Consumption Aware Method(ECAM)for CMSSS optimization was proposed.The method selected a composite service for the task according to QoS metrics,and scheduled subtasks to meet the highest cohesion degree in the idle time of the manufacturing service according to the occupation,so as to reduce the preheating energy consumption of the manufacturing equipment.The results showed that ECAM had superior fitness to the previous Feasible Schedule Generation Schema(FSGS)under 6 weights evaluation metrics.In cloud manufacturing scenarios with preheating process,ECAM achieved basically the same QoS satisfaction and better energy economy as FSGS.

Key words: cloud manufacturing, service selection and scheduling, task cohesion, preheating energy, evolutionary algorithm

摘要: 云制造服务选择与调度(CMSSS)问题在优化资源配置和满足用户需求方面被广泛关注。然而,大多数现有方法对制造设备的预热过程考虑不足,导致了能源的浪费。为了降低制造能耗并保证服务质量(QoS),建立了CMSSS的多目标优化模型,通过任务衔接度模型量化制造服务设备的预热能耗,并提出一种能耗感知的云制造服务选择与调度优化方法(ECAM)。该方法根据QoS指标为任务选择复合服务,根据制造服务占用情况将子任务调度到空闲时段,并最大化任务衔接度,以降低制造设备的预热能耗。结果表明,在6种评价指标权重下,ECAM比以往的可行调度生成方案(FSGS)具有更好的适应度。在具有预热过程的云制造场景中,ECAM能获得与FSGS基本一致的QoS满意度和更好的能耗经济性。

关键词: 云制造, 服务选择与调度, 任务衔接度, 预热能耗, 进化算法

CLC Number: