Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (10): 3658-3672.DOI: 10.13196/j.cims.2023.0360

Previous Articles     Next Articles

Dynamic matching time horizon and stable matching in cloud manufacturing platforms with incomplete information

YAN Pengyu1+,JIANG Qiqi1,YANG Liu1,KONG Xiangtianrui2   

  1. 1.School of Management and Economics,University of Electronic Science and Technology of China
    2.College of Economics,Shenzhen University
  • Online:2024-10-31 Published:2024-11-08
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.71971044,72471048),the Major Program of National Social Science Foundation,China(No.20&ZD084),the Humanities and Social Science General Youth Program of MOE,China (No.22YJC630052),the Youth Project of Guangdong Philosophy and Social Science Planning,China (No.GD22YGL07),and the Sichuan Provincial Philosophy and Social Science Foundation,China(No.SCJJ23ND08).

不完全信息下云制造平台动态匹配时域与稳定匹配研究

晏鹏宇1+,蒋琪琪1,杨柳1,孔祥天瑞2   

  1. 1.电子科技大学经济与管理学院
    2.深圳大学经济学院
  • 作者简介:
    +晏鹏宇(1982-),男,四川自贡人,教授,博士,博士生导师,研究方向:生产运作管理,通讯作者,E-mail:yanpy@uestc.edu.cn;

    蒋琪琪(1999-),女,四川成都人,硕士研究生,研究方向:云制造、强化学习,E-mail:jiangqiqi@std.uestc.edu.cn;

    杨柳(1997-),女,四川泸州人,博士研究生,研究方向:生产运作管理,E-mail:201921150225@std.uestc.edu.cn;

    孔祥天瑞(1987-),男,山东济南人,副教授,博士,硕士生导师,研究方向:拍卖机制与实物互联网,E-mail:kongxtr@szu.edu.cn。
  • 基金资助:
    国家自然科学基金资助项目(71971044,72471048);国家社会科学基金重大资助项目(20&ZD084);教育部人文社会科学研究一般项目青年基金资助项目(22YJC630052);广东省哲学社会科学规划青年资助项目(GD22YGL07);四川省哲学社会科学基金资助项目(SCJJ23ND08)。

Abstract: Existing researches focus on constructing supply-demand matching models and developing solving algorithms for cloud manufacturing platforms,with insufficient attention to the impact of batch matching time horizon in uncertain environments on platform operations.Aiming at the complex scenario where capacity suppliers and demanders randomly arrive and may depart anytime in cloud manufacturing platforms,a Markov Decision Model (MDP) was established based on dynamic bipartite graphs and a Q-learning dynamic time horizon decision-making method utilizing state and action reshaping techniques was proposed.According to the aggregated information from platform orders and shared capacities,this method adaptively determined the matching time horizon,and the stable matching solutions considering the preferences of suppliers and demanders were generated.Numerical experiments demonstrated that the comprehensive platform operational indicators of the proposed algorithm were better than the commonly used random-event-triggered and fixed matching time horizon methods.The experimental results provided management insights for the operation of supply-demand matching in cloud manufacturing platforms.

Key words: cloud manufacturing, shared platform, supply-demand matching, reinforcement learning, matching time horizon

摘要: 鉴于现有研究侧重于构建云制造平台供需匹配模型并开发求解算法,批处理匹配时域长度在不确定环境下对云制造平台运营的影响关注不足,针对云制造平台产能供需双方随机到达并可随时离开的复杂情景,建立了基于动态二部图的Markov决策模型,并提出基于状态和动作重塑技术的Q-learning动态时域匹配决策方法。该方法根据平台订单和共享产能的聚合信息,自适应地决策匹配时域长度,并产生考虑了供需双方偏好的稳定匹配方案。数值实验表明,在多种情景和问题参数下,该方法的综合平台运营指标优于常用的随机事件触发和固定匹配时域方法。实验结果为云制造平台供需匹配运营提供了管理启示。

关键词: 云制造, 共享制造, 供需匹配, 强化学习, 匹配时域

CLC Number: