Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (10): 3553-3566.DOI: 10.13196/j.cims.2024.S01

Previous Articles     Next Articles

Multi-objective allocation optimization of intelligent computing center resources based on improved ivy optimization algorithm

CUI Guangzhang1,2,LIU Tianhang1,ZHANG Wei2,3,XU Weiwei1,BAO Hujun1+   

  1. 1.State Key Laboratory of Computer Aided Design and Computer Graphics,Zhejiang University
    2.Image Derivative Inc
    3.Department of Automation,Qingdao University
  • Online:2025-10-31 Published:2025-10-31
  • Supported by:
    Project Supported by the “Pieneer”and“Leading Goose”R&D Program of Zhejiang Province,China(No.2023C01042).

基于改进常青藤优化算法的智算中心资源多目标配置优化

崔广章1,2,刘天航1,张巍2,3,许威威1,鲍虎军1+   

  1. 1.浙江大学计算机辅助设计与图形系统全国重点实验室
    2.杭州像衍科技有限公司
    3.青岛大学自动化学院
  • 作者简介:
    崔广章(1988-),男,山东鄄城人,博士研究生,助理研究员,研究方向:云计算、边缘计算、人工智能,E-mail:cuiguangzhang@zju.edu.cn;

    刘天航(2002-),男,内蒙古赤峰人,博士研究生,研究方向:智能计算、分布式训练、推理框架优化;

    张巍(2000-),男,江苏盐城人,硕士研究生,研究方向:智能优化算法,医疗调度;

    许威威(1975-),男,安徽绩溪人,教授,博士,研究方向:三维重建、深度学习、物理仿真和虚拟现实;

    +鲍虎军(1966-),男,浙江温州人,教授,博士,研究方向:计算机图形学、虚拟现实、计算机视觉,通讯作者,E-mail:bao@cad.zju.edu.cn。
  • 基金资助:
    浙江省尖兵领雁研究攻关计划资助项目(2323C01042)。

Abstract: In recent years,general artificial intelligence represented by large models has rapidly advanced.Accurately and efficiently assessing the training requirements of large models and choosing the appropriate hardware and network topologies have become critical challenges.To address this,we propose an improved multi-objective Ivy optimization algorithm was proposed to optimize resource allocation in intelligent computing centers.According to the hardware requirements and network topology constraints in model training,a multi-objective mixed-integer programming model was establish aiming to minimize the cost of building computing clusters and the time required to complete model training.Then,an improved multi-objective Ivy optimization algorithm was introduced,incorporating a vitality factor to assess the diversity of the population.The population update strategy was adaptively chosen based on the vitality of the current population,striking a balance between diversity and convergence.Simulation experiments compared the proposed algorithm with MOPSO,NSGA-Ⅱ,and SPEA-Ⅱ,and the results confirmed its effectiveness and feasibility.Furthermore,sensitivity analysis experiments verified the impact of tensor parallelism and pipeline parallelism on the configuration scheme.

Key words: intelligent computing center resource allocation, large model training, multi-objective ivy optimization algorithm, vitality factor

摘要: 近年来,以大模型为代表的通用人工智能迅速发展,准确高效测算大模型训练需求及合理选择硬件设备与网络拓扑成为关键挑战。鉴于此,提出一种改进的多目标常青藤优化算法来优化智算中心的资源配置。首先,根据模型训练中硬件需求和网络拓扑结构约束,建立多目标混合整数规划模型,旨在最小化算力集群搭建成本和模型训练完成时间。然后,提出改进的多目标常青藤优化算法,引入活力因子来评估种群的多样性。根据当前种群的活力自适应选择种群更新策略,平衡种群的多样性和收敛性。仿真实验将所提算法与MOPSO、NSGA-Ⅱ,SPEA-Ⅱ进行对比,结果表明本文算法有效可行。此外,通过灵敏度分析实验验证了张量并行度和流水线并行度对配置方案的影响。

关键词: 智算中心资源配置, 大模型训练, 多目标常青藤优化算法, 活力因子

CLC Number: