Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (11): 4178-4190.DOI: 10.13196/j.cims.2023.0345

Previous Articles     Next Articles

Data placement strategy with replica mechanisms for workflows in edge-cloud environments

ZHENG Yuheng1,LIN Bing1,2,3+,LU Yu1,CHEN Xing3,4,SU Minghui1   

  1. 1.College of Physics and Energy,Fujian Normal University
    2.School of Electronics Engineering and Computer Science,Peking University
    3.Key Laboratory of Network Computing and Intelligent Information Processing in Fujian Province
    4.College of Computer and Data Science/College of Software,Fuzhou University
  • Online:2025-11-30 Published:2025-12-08
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.62072108),and the University-Industry Cooperation of Fujian Province,China(No.2022H6024,2021H6026).

云边环境下基于副本的工作流数据布局策略

郑裕恒1,林兵1,2,3+,卢宇1,陈星3,4,苏明辉1   

  1. 1.福建师范大学物理与能源学院
    2.北京大学信息科学技术学院
    3.福建省网络计算与智能信息处理重点实验室
    4.福州大学计算机与大数据学院/软件学院
  • 作者简介:
    郑裕恒(1999-),男,福建福州人,硕士研究生,研究方向:数据布局、计算智能,E-mail:1131838595@qq.com;

    +林兵(1986-),男,福建福清人,副教授,博士,研究方向:云计算和智能计算,通讯作者,E-mail:WheelLX@163.com;

    卢宇(1974-),男,福建福州人,教授,硕士,研究方向:信息系统建模与仿真,E-mail:fzluyu@163.com;

    陈星(1985-),男,福建福州人,教授,博士,研究方向:软件系统架构和云计算,E-mail:chenxing@fzu.edu.cn;

    苏明辉(1998-),男,福建泉州人,硕士研究生,研究方向:云计算与数据布局,E-mail:398315418@qq.com。
  • 基金资助:
    国家自然科学基金资助项目(62072108);福建省高校产学合作资助项目(2022H6024,2021H6026)。

Abstract: It is a challenge to reduce data transmission time while ensuring data security for large datasets in scientific workflows.Combining the advantages of cloud computing and edge computing,a replica-based data placement model in edge-cloud environments was developed,and a Nonlinear inertial weight discrete Particle Swarm Optimization algorithm based on Genetic Algorithm operators(NPSO-GA)was proposed.This algorithm considered the factors such as data security,transmission bandwidth and storage capacity of datacenters,and the data replicas to reduce the transmission latency in scientific workflows was generated dynamically.The crossover and mutation operators of the genetic algorithm were introduced into the PSO algorithm to enhance its search ability and prevent prematurely convergence.Experimental results showed the data placement strategy with replica mechanisms based on NPSO-GA could effectively reduce transmission time during the execution of scientific workflows.It is a challenge to reduce data transmission time while ensuring data security for large datasets in scientific workflows.Combining the advantages of cloud computing and edge computing,a replica-based data placement model in edge-cloud environments was developed,and a Nonlinear inertial weight discrete Particle Swarm Optimization algorithm based on Genetic Algorithm operators(NPSO-GA)was proposed.This algorithm considered the factors such as data security,transmission bandwidth and storage capacity of datacenters,and the data replicas to reduce the transmission latency in scientific workflows was generated dynamically.The crossover and mutation operators of the genetic algorithm were introduced into the PSO algorithm to enhance its search ability and prevent prematurely convergence.Experimental results showed the data placement strategy with replica mechanisms based on NPSO-GA could effectively reduce transmission time during the execution of scientific workflows.

Key words: cloud computing, edge computing, scientific workflow, data replica, data placement

摘要: 面对科学工作流中的大型数据集,如何在保证数据安全的前提下最小化传输时延是一个重要挑战。将云计算和边缘计算的优势相结合,构建了云边环境下基于副本的数据布局模型,并提出了一种基于遗传算法算子的非线性惯性权重离散粒子群优化算法(NPSO-GA)。该方法考虑了数据安全、数据中心的传输带宽、存储容量等因素,动态生成数据副本以降低科学工作流传输时延;通过在粒子群算法中引入遗传算法的交叉和变异算子,增强了粒子群算法的搜索能力,避免早熟收敛。实验结果表明,基于NPSO-GA的数据副本布局策略可以有效降低科学工作流执行过程中的传输时延。

关键词: 云计算, 边缘计算, 科学工作流, 数据副本, 数据布局

CLC Number: