Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (8): 2964-2982.DOI: 10.13196/j.cims.2023.0169

Previous Articles     Next Articles

Solving engineering optimization problem based on modified equilibrium optimizer algorithm

LI Yu1,2,LIANG Xiao2+,LIU Jingsen3,ZHOU Huan2   

  1. 1.Institute of Management Science and Engineering,Henan University
    2.School of Business,Henan University
    3.School of Software,Henan University
  • Online:2025-08-31 Published:2025-09-04
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.72104069),the Henan Provincial Key R&D and Popularization Special Projects,China (No.182102310886),and the Funding Project for Innovation and Quality Improvement of Postgraduate Education in Henan University,China (NO.SYL19060145).

基于改进平衡优化器算法求解工程优化问题

李煜1,2,梁晓2+,刘景森3,周欢2   

  1. 1.河南大学管理科学与工程研究所
    2.河南大学商学院
    3.河南大学软件学院
  • 作者简介:
    李煜(1969-),女,河南开封人,教授,博士,研究方向:智能优化、电子商务,E-mail:leey@henu.edu.cn;

    +梁晓(1998-),女,河南安阳人,硕士研究生,研究方向:元启发式算法、智能优化、路径规划,通讯作者,E-mail:liangx@henu.edu.cn;

    刘景森(1968-),男,河南开封人,教授,博士,研究方向:智能算法、进化计算,E-mail:ljs@henu.edu.cn;

    周欢(1990-),女,河南商丘人,讲师,博士,研究方向:人工智能、风险管理,E-mail:zhouhuan@henu.edu.cn。
  • 基金资助:
    国家自然科学基金资助项目(72104069);河南省重点研发与推广专项资助项目(182102310886);河南大学研究生教育创新与质量提升资助项目 (SYL19060145)。

Abstract: To efficiently solve nonlinear optimization problems with multiple constraints in engineering design,a Modified Equilibrium Optimizer (MEO) was proposed.In the initial stage,the global search ability of the algorithm was enhanced by lens opposition-based learning,and the optimization information of particles in the population was further enriched.Then the exploitation and exploration phases were dynamically balanced by exponential adjustment factor.Finally,the optimal particle concentration was updated by using the dimensional-by-dimension Gaussian mutation mechanism and greedy strategy to avoid premature convergence.Two complex function sets of IEEE CEC2019 and IEEE CEC2020 with different rotation matrices were used to test the optimization performance of the proposed algorithm.Moreover,the statistical significance of algorithm was verified by Friedman test and Wilcoxon rank sum test.Experimental results showed that MEO performed well in the optimization accuracy and stability.By solving seven engineering design problems of different complexity,it was proved that MEO had good optimization efficiency and application space.

Key words: equilibrium optimizer algorithm, engineering problems, lens opposition-based learning, Gaussian variation

摘要: 针对工程设计领域中带有多个约束条件的非线性优化问题,提出一种改进平衡优化器算法(MEO)。通过引入镜头成像反向学习策略,增强算法在初始阶段的全局搜索能力,丰富粒子种群的位置信息,随后利用指数调节因子动态平衡勘探和开发能力,最后通过逐维高斯变异机制和贪婪策略更新最优粒子的浓度,避免早熟收敛。使用具有不同旋转矩阵的IEEE CEC2019和IEEE CEC2020两个复杂函数集测试所提算法在优化方面的性能,并且通过Friedman检验和Wilcoxon秩和检验验证算法的显著性,实验结果表明,MEO在寻优精度和稳定性方面表现优异。通过求解7个不同复杂程度的工程设计问题,证明MEO具有良好的优化效率和应用空间。

关键词: 平衡优化器算法, 工程问题, 镜头成像反向学习, 高斯变异

CLC Number: