Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (9): 3324-3337.DOI: 10.13196/j.cims.2024.0459

Previous Articles     Next Articles

Energy-efficient scheduling method of distributed assembly hybrid flow shop

ZHAO Cai1,WU Lianghong2+,ZUO Cili2,ZHANG Hongqiang2,LI Zhijing2   

  1. 1.School of Mechanical Engineering,Hunan University of Science and Technology
    2.School of Information and Electrical Engineering,Hunan University of Science and Technology
  • Online:2025-09-30 Published:2025-10-14
  • Supported by:
    Project supported by the National Key R&D Program,China(No.2023YFC3011100),the National Natural Science Foundation,China(No.62373146),the Natural Science Foundation of Hunan Province,China(No.2022JJ30265,2023JJ40286),the Young Talent of Lifting Engineering for Science and Technology in Hunan Province,China(No.2022TJ-Q03),the Key Project of Education Department of Hunan Province,China(No.23A0382),and the Outstanding Youth Project of Education Department of Hunan Province,China(No.22B0476).

分布式装配混合流水车间节能调度方法

赵才1,吴亮红2+,左词立2,张红强2,李智靖2   

  1. 1.湖南科技大学机电工程学院
    2.湖南科技大学信息与电气工程学院
  • 作者简介:
    赵才(1996-),男,河南周口人,博士研究生,研究方向:生产调度、智能算法,E-mail:644197884@qq.com;

    +吴亮红(1977-),男,湖南长沙人,教授,博士,博士生导师,研究方向:智能优化与调度、多目标优化,通讯作者,E-mail:lhwu@hnust.edu.cn;

    左词立(1989-),男,湖南长沙人,讲师,博士,硕士生导师,研究方向:脑机接口、计算智能,E-mail:cilizuo@163.com;

    张红强(1979-),男,湖南长沙人,讲师,博士,硕士生导师,研究方向:深度强化学习、群机器人系统,E-mail:hongqiangzhang@hnust.edu.cn;

    李智靖(1988-),男,湖南长沙人,讲师,博士,硕士生导师,研究方向:人机器人交互协作与共融、机器人高效技能学习与神经网络控制,E-mail:3764646639@qq.com。
  • 基金资助:
    国家重点研发计划资助项目(2023YFC3011100);国家自然科学基金资助项目(62373146);湖南省自然科学基金资助项目(2022JJ30265,2023JJ40286);湖南省人才托举工程青年人才资助项目(2022TJ-Q03);湖南省教育厅重点资助项目(23A0382);湖南省教育厅优秀青年资助项目(22B0476)。

Abstract: The distributed hybrid flow shop scheduling problem and assembly shop problem are widely exist in real manufacturing systems.In actual production,besides machine resources,worker resources are also key factors affecting production efficiency.Therefore,the energy-efficient distributed assembly hybrid flow shop scheduling problem was studied considering worker resources.A mixed integer linear programming model was established aiming at minimizing total tardiness and total energy consumption.Based on the characteristics of the problem and its multi-objective nature,a Q-Learning Memetic Algorithm (QLMA) was proposed.In QLMA,to generate excellent initial solutions,a feature-based initialization strategy was introduced.Meanwhile,a Q-learning based variable neighborhood local search was proposed to refine non-dominated solutions,thereby guiding population evolution.Furthermore,an energy-saving strategy was designed to further optimize total energy consumption.Finally,extensive experiments were conducted on 90 large-scale instances,and compared with three other algorithms,the results demonstrated the effectiveness of the proposed algorithm.

Key words: distributed hybrid flow shop scheduling problem, assembly shop problem, worker resources, energy-efficient, Q-learning memetic algorithm

摘要: 分布式混合流水车间调度问题和装配车间问题已广泛存在于现实的制造系统中。 在实际生产中,除机器资源外,工人资源也是影响生产效率的关键因素。因此,研究了考虑工人资源的分布式装配混合流水车间节能调度问题。 首先,建立以最小化总延迟和总能耗为目标的混合整数线性规划模型。 基于问题特征及多目标特性,提出了一种Q-learning模因算法 (QLMA)。 在QLMA中,为了生成优秀的初始解,提出了一种基于问题特征的初始化策略。同时,采用一种基于Q-learining的变邻域局部搜索对非支配解进行细化,从而引导种群进化。 此外,设计了一种节能策略,以进一步优化总能耗。最后,在90个大型实例上进行了大量的实验,并与其他3种先进算法进行比较,验证了QLMA算法的有效性。

关键词: 分布式混合流水车间调度问题, 装配车间问题, 工人资源, 节能, Q-learning模因算法

CLC Number: