Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (9): 3455-3466.DOI: 10.13196/j.cims.2024.0348

Previous Articles     Next Articles

Incremental learning with dynamic prototype for waste appliance recognition

HAN Honggui1,2,3,4+,LIU Yiming1,2,3,4,LI Fangyu1,2,3,4,DU Yongping1,2,3,4   

  1. 1.School of Information Science and Technology,Beijing University of Technology
    2.Beijing Municipal Key Laboratory of Computational Intelligence and Intelligent System
    3.Engineering Research Center of Digital Community,Ministry of Education
    4.Beijing Institute of Artificial Intelligence
  • Online:2025-09-30 Published:2025-10-16
  • Supported by:
    Project supported by the National Key R&D Program,China(No.2022YFB3305800-5),the National Natural Science Foundation,China(No.62125301,62021003,62373014),the Beijing Municipal Nova Program,China(No.K7058000202402),and the Beijing Municipal Youth Scholar Foundation,China(No.037).

基于动态原型增量学习的废旧家电识别方法

韩红桂1,2,3,4+,刘一鸣1,2,3,4,李方昱1,2,3,4,杜永萍1,2,3,4   

  1. 1.北京工业大学信息科学技术学院
    2.计算智能与智能系统北京市重点实验室
    3.数字社区教育部工程研究中心
    4.北京人工智能研究院
  • 作者简介:
    +韩红桂(1983-),男,江苏泰州人,教授,博士,博士生导师,研究方向:复杂系统建模、优化与控制,通讯作者,E-mail:rechardhan@bjut.edu.cn;

    刘一鸣(1997-),男,河北廊坊人,博士研究生,研究方向:可信深度神经网络建模,E-mail:liuyiming@emails.bjut.edu.cn;

    李方昱(1985-),男,辽宁鞍山人,教授,博士,博士生导师,研究方向:智能感知与智能建模,E-mail:fangyu.li@bjut.edu.cn;

    杜永萍(1977-),女,山西太原人,教授,博士,博士生导师,研究方向:信息检索、自然语言处理、智能信息处理,E-mail:ypdu@bjut.edu.cn。
  • 基金资助:
    国家重点研发计划资助项目(2022YFB3305800-5);国家自然科学基金资助项目(62125301,62021003,62373014);北京市科技新星计划资助项目(K7058000202402);北京市青年学者资助项目(037)。

Abstract: To address the problem of the appliance recognition model being interfered by different classes during the recycling process of waste appliances,causing unstable recognition results,an incremental learning with dynamic prototype for waste appliance recognition was proposed.An incremental residual aggregation structure was established to acquire new and old class appliance features to enhance the extension capability of the appliance recognition model.A shared weight dynamic prototype was designed to acquire representative features and distinguishing features of appliances,reducing the cross-interference in the recognition process.Finally,a comparison prototype method was designed to perceive the misclassification,combining the appliance representative features of the shared weight dynamic prototype to improve the recognition accuracy.The proposed recognition method was applied to the sorting of waste appliances in different scenarios,and the experimental results demonstrated the recognition accuracy of the method.

Key words: waste electrical appliance recognition, dynamic prototype, incremental learning, deep neural networkwaste electrical appliance recognition, dynamic prototype, incremental learning, deep neural network

摘要: 针对废旧家电回收过程中废旧家电识别模型受到不同类别干扰,引起识别结果不稳定的问题,提出了一种基于动态原型增量学习的废旧家电识别方法。首先,建立增量残差聚合结构,获取新旧类家电特征,增强了废旧家电识别模型的扩展能力。其次,设计共享权重动态原型,获取家电代表性特征和区分性特征,降低了识别过程的交叉干扰。最后,设计对比原型方法感知误分类别,结合共享权重动态原型的家电代表性特征,提升了识别精度。将提出的识别方法应用于不同场景下废旧家电分拣,实验结果表明该方法具有较好的识别精度。

关键词: 废旧家电识别, 动态原型, 增量学习, 深度神经网络

CLC Number: