Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (2): 524-533.DOI: 10.13196/j.cims.2024.0038

Previous Articles     Next Articles

Dynamic prediction method for fermentation process product concentration based on incremental learning

LIU Jing1,2,YANG Leyan1,JI Haipeng2,3,XIA Jianye4+   

  1. 1.School of Artificial Intelligence,Hebei University of Technology
    2.Hebei Province Data-Driven Industrial Intelligence Engineering Research Center
    3.School of Materials Science and Engineering,Hebei University of Technology
    4.Intelligent Biomanufacturing Center,Tianjin Institute of Industrial Biotechnology,Chinese Academy of Sciences
  • Online:2025-02-28 Published:2025-03-06
  • Supported by:
    Project supported by the Natural Science Foundation of Hebei Province,China(No.F2022202021),and the Hebei Provincial Central Guidance Local Development Fund,China(No.236Z0305G).

基于增量学习的发酵过程产物浓度动态预测方法

刘晶1,2,杨乐言1,季海鹏2,3,夏建业4+   

  1. 1.河北工业大学人工智能与数据科学学院
    2.河北省数据驱动工业智能工程研究中心
    3.河北工业大学 材料科学与工程学院
    4.中国科学院天津工业生物技术研究所智能生物制造中心
  • 作者简介:
    刘晶(1979-),女,内蒙包头人,研究员,博士,研究方向:工业人工智能等,E-mail:liujing@scse.hebut.edu.cn;

    杨乐言(2000-),女,河南许昌人,硕士研究生,研究方向:深度学习、生物发酵等,E-mail:202232803037@stu.hebut.edu.cn;

    季海鹏(1981-),男,河北沧州人,副研究员,博士,研究方向:智能设备优化,E-mail:haipeng@jingnuodata.com;

    +夏建业(1980-),男,河北任丘人,研究员,博士,研究方向:生物制造,通讯作者,E-mail:xiajy@tib.cas.cn。
  • 基金资助:
    河北省自然科学基金资助项目(F2022202021);河北省中央引导地方发展资金资助项目(236Z0305G)。

Abstract: In the fermentation state,the online prediction accuracy of product concentration is unstable due to differences between batches.To address this problem,a Dynamic Prediction approach for fermentation product concentration using Incremental Learning(ILDP)was proposed,and a similarity calculation module based on feature dimension reduction was presented for historical and new samples,which helped address the issue of fewer newly added label samples during fermentation.An adaptive update module based on incremental learning was proposed to update model parameters by calculating the loss gradient both new and training samples,enabling quick adaptation to updates with limited newly added label samples.Finally,experiments on the IndPenSim dataset validated the predictive performance of the proposed method on fermentation data from various batches.

Key words: fermentation process, soft sensor, incremental learning, self-adaption

摘要: 针对实际发酵过程中不同批次之间的差异性导致产物浓度的在线预测精度不稳定的问题,提出一种基于增量学习的发酵过程产物浓度动态预测方法,并提出基于特征降维的相似度计算模块,对历史样本与新增样本进行特征降维,从历史样本中选取与新增样本相似的样本填充新增样本集,解决发酵过程新增标签样本少的问题;提出基于增量学习的自适应更新模块,通过计算新增样本与模型训练样本的损失梯度来更新模型参数,使模型在新增标签样本少的情况下具备快速自适应更新的能力;在青霉素公开数据集IndPenSim上进行实验,验证了该方法在不同批次发酵数据上的预测性能。

关键词: 发酵过程, 软测量, 增量学习, 自适应

CLC Number: