Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (8): 2756-2775.DOI: 10.13196/j.cims.2023.BPM07

Previous Articles     Next Articles

Incremental outcome-oriented predictive process monitoring based on XGBoost

WANG Jiaojiao1,2,MA Xiaoyu1,2,LIU Chang1,2,YU Dingguo1,2+,YU Dongjin3,ZHANG Yinzhu4   

  1. 1.Institute of Intelligent Media Technology,Communication University of Zhejiang
    2.Key Lab of Film and TV Media Technology of Zhejiang Province
    3.School of Computer Science and Technology,Hangzhou Dianzi University
    4.Information Center,Shanghai Dianji University
  • Online:2024-08-31 Published:2024-09-05
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.62002316),the Key R&D Program of Zhejiang Province,China(No.2019C03138,2017C01010,2021C03138),and the Public Welfare Technology Application Research Foundation of Zhejiang Province,China(No.LGF21F010001).

基于XGBoost增量实现业务流程执行结果的预测性监控方法

王娇娇1,2,马小雨1,2,刘畅1,2,俞定国1,2+,俞东进3,张银珠4   

  1. 1.浙江传媒学院智能媒体技术研究院
    2.浙江省影视媒体技术研究重点实验室
    3.杭州电子科技大学计算机学院
    4.上海电机学院信息化中心
  • 作者简介:
    王娇娇(1992-),女,河南信阳人,讲师,博士,研究方向:过程数据挖掘、业务流程管理等,E-mail:jjwang@cuz.edu.cn;

    马小雨(1992-),男,山东临沂人,讲师,博士,研究方向:数字图像质量评价、人工智能算法及应用等;

    刘畅(1990-),女,河南洛阳人,助理研究员,博士,研究方向:机器学习算法及应用、人工智能算法理论等;

    +俞定国(1976-),男,浙江绍兴人,教授,博士,研究方向:推荐系统、媒体大数据与人工智能应用等,通讯作者,E-mail:yudg@cuz.edu.cn;

    俞东进(1969-),男,浙江杭州人,教授,博士,研究方向:业务流程管理、大数据与软件工程等;

    张银珠(1991-),女,安徽阜阳人,初级工程师,研究方向:大数据与软件工程、人工智能算法及应用等。
  • 基金资助:
    国家自然科学基金资助项目(62002316);浙江省重点研发计划资助项目(2019C03138,2017C01010,2021C03138);浙江省公益性技术应用研究资助项目(LGF21F010001)。

Abstract: With the improvement of industrial manufacturing business processes,monitoring technology aimed at predicting the results of execution is necessary.The technique builds prediction models based on historical execution to predict the results of the processes being executed.However,existing studies assume that the process execution behavior remains the same,but the process often changes during the operation(the process execution drift)in practical application,so the prediction model needs to adapt to this drift.In response to this situation,inspired by the idea of online learning,a predictive process monitoring technology was proposed based on XGBoost incremental implementation targeting process execution outcomes,and a large number of experiments on real data sets and synthetic data sets were conducted respectively.The experimental results showed that the incremental learning technology based on XGBoost could well provide an effective solution for predictive process monitoring in real scenarios of industrial manufacturing.

Key words: predictive process monitoring, extreme gradient boosting, incremental learning, concept drift

摘要: 随着工业制造业务流程智能化提升,以预测执行结果为目标的监控技术成为必需。该技术基于历史执行构建预测模型,从而对正在执行的流程进行结果预测。但现有研究假定流程执行行为一直保持不变,实际上流程在运行中常发生变化(即流程执行发生漂移),因此预测模型也需要适应这种漂移。针对这种情况,受到在线学习思想的启发,提出了基于XGBoost增量实现以流程执行结果为目标的预测流程监控技术,并分别在真实数据集和合成数据集上进行了大量的实验。实验结果表明,基于XGBoost的增量学习技术能够很好地为工业制造真实场景中的预测性流程监控提供一种有效的解决方案。

关键词: 预测性业务流程监控, XGBoost, 增量学习, 概念漂移

CLC Number: