Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (5): 1588-1595.DOI: 10.13196/j.cims.2022.0976

Previous Articles     Next Articles

Moving object detection under illumination changes scene based on consistency of temporal and spatial samples

ZHANG Yunsheng1,ZHANG Yiqiong2,LENG Kaijun1+   

  1. 1.Research Center of Hubei Logistics Development,Hubei University of Economics
    2.School of Science & Engineering,University of Toyama
  • Online:2025-05-31 Published:2025-06-05
  • Supported by:
    Project supported by the Natural Science Foundation of Hubei Province,China(No.2024AFB866),the Excellent Young Team of Universities in Hubei Province,China(No.T2022024),and the Scientific Research Plan of Hubei Provincial Department of Education,China(No.B2023115).

基于时空样本一致性的光照变化场景运动目标检测

张运胜1,张艺琼2,冷凯君1+   

  1. 1.湖北经济学院湖北物流发展研究中心
    2.富山大学科学与工程学院
  • 作者简介:
    张运胜(1982-),男,湖北恩施人,副教授,博士,研究方向:智能制造,E-mail:yunshengzhang@hbue.edu.cn;

    张艺琼(1999-),男,湖北建始人,博士研究生,研究方向:人工智能,E-mail:zhangyiqiong1016@126.com;

    +冷凯君(1981-),男,湖南浏阳人,教授,博士,研究方向:智慧供应链管理,通讯作者,E-mail:lengkaijun@hube.edu.cn。
  • 基金资助:
    湖北省自然科学基金资助项目(2024AFB866);湖北省高等学校优秀中青年团队资助项目(T2022024);湖北省教育厅科研计划资助项目(B2023115)。

Abstract: Accurate target detection is the foundation of modern intelligent manufacturing,intelligent transportation and other fields.However,current classic visual foreground extraction methods struggle to meet real-time and accurate requirements in scenes with slow or sudden lighting changes.Therefore,an improved moving object detection method that combined Wronskian function with Visual Background extractor (ViBe) was proposed.The background model was built based on the consistency of temporal and spatial samples,and it was initialized using multiple frames with a specific time interval.Then,the Wronskian function was used to judge the linear correlation between the vector of current pixels and the vector of samples in the background model.The times of linear correlation was used to detect whether the current pixels belonged to moving or background pixels.Finally,the background model was updated using the detection results.Qualitative and quantitative experimental results on real-world scenes showed that the proposed method could effectively overcome the influence of multiple disturbances existing in illumination scenes to extract moving objects.It achieved a higher detection rate and more robust performance when compared with other state-of-the-art methods under slow or abrupt illumination change scenes.

Key words: intelligent manufacturing, intelligent transportation, moving object detection, illumination change

摘要: 精准目标检测是现代智能制造业、智能交通等领域的基础,然而,经典的视觉前景提取方法在光照缓慢或者突变场景中难以满足精确和实时的需求。为此,基于朗斯基函数和视觉背景提取(ViBe)方法提出了一种融合改进的光照变化运动目标检测算法。该方法首先通过时空样本一致性原则构建像素空间背景模型,并利用短时间内采集的多帧图像数据构建初始背景模型;然后,通过朗斯基函数判断当前帧像素构成的向量与背景样本向量的线性相关性,基于当前像素构成的向量与背景模型中样本向量线性相关次数判断当前像素点为前景或者背景;最后,根据判断结果更新背景模型。定性定量实验结果表明,该融合模型能够有效地克服复杂光照变化场景下的多种干扰因素,准确获取光照缓慢或突变场景下的运动目标,且性能优于几种流行的光照变化运动目标检测算法。

关键词: 智能制造, 智能交通, 运动目标检测, 光照变化

CLC Number: