Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (2): 423-437.DOI: 10.13196/j.cims.2022.0649

Previous Articles     Next Articles

Multi-objective distributed flow shop scheduling considering order delivery time

HOU Yushuang1,2,FU Yaping1+,WANG Hongfeng2   

  1. 1.School of Business,Qingdao University
    2.School of Information Science and Engineering,Northeastern University
  • Online:2025-02-28 Published:2025-03-05
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.62173076,61703220),the Shandong Provincial Outstanding Youth Innovation Team Project of Colleges and Universities,China(No.2020RWG011),and the Postdoctoral Science Foundation,China(No.2019T120569).

考虑订单运输时间的多目标分布式流水车间调度

侯玉双1,2,付亚平1+,王洪峰2   

  1. 1.青岛大学商学院
    2.东北大学信息科学与工程学院
  • 作者简介:
    侯玉双(1997-),女,山东德州人,青岛大学商学院硕士,东北大学信息科学与工程学院博士研究生,研究方向:制造系统建模与优化,E-mail:hou18335@163.com;

    +付亚平(1985-),男,山东青岛人,教授,博士,研究方向:制造与再制造系统建模与优化,通讯作者,E-mail:fuyaping0432@qdu.edu.cn;

    王洪峰(1979-),男,辽宁沈阳人,教授,博士,研究方向:复杂系统建模与优化、生产与供应链管理及进化计算等,E-mail:hfwang@mail.neu.edu.cn。
  • 基金资助:
    国家自然科学基金资助项目(62173076,61703220);山东省高等学校优秀青年创新团队资助项目(2020RWG011);中国博士后科学基金特别资助项目(2019T120569)。

Abstract: For the transformation of manufacturing enterprises to a distributed production structure with multiple factories,a multi-objective distributed flow shop scheduling problem was proposed considering order delivery time,and a  mixed integer programming model was built aiming at minimizing makespan and total weighted earliness and tardiness penalty.A multi-objective brain storm optimization combining with the characteristics of this problem was designed as a solution.To enhance its search ability,an adaptive clustering strategy was introduced according to the dominated rule,and two crossover methods as well as four neighborhood structures were employed based on the problem features.Experimental results indicated that the proposed approach could achieve superior performance.

Key words: distributed flow shop scheduling, order delivery time, brain storm optimization, multi-objective optimization

摘要: 针对制造企业向多工厂分布式生产结构的转变,提出一个考虑订单运输时间的多目标分布式流水车间调度问题,并构建了一个以最小化最大完工时间与总加权提前和拖期惩罚为目标的混合整数规划模型,进而结合问题特点提出一种多目标头脑风暴优化算法进行求解。为了提高算法的搜索能力,利用支配规则设计了一种自适应聚类策略,并基于问题特征采用两种交叉方法和4种邻域结构。实验结果验证了所提算法的优越性。

关键词: 分布式流水车间调度, 订单运输时间, 头脑风暴优化, 多目标优化

CLC Number: