Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (11): 4087-4098.DOI: 10.13196/j.cims.2023.0F01

Previous Articles     Next Articles

Integrated scheduling of production and transportation in distributed heterogeneous hybrid flow shop

LI Yingli1,2,LIU Ao1,DENG Xudong1+   

  1. 1.School of Management,Wuhan University of Science and Technology
    2.State Key Lab of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology
  • Online:2024-11-30 Published:2024-11-29
  • Supported by:
    Project supported by the Hubei Provincial Natural Science Foundation Youth Project,China(No.2023AFB088),the Open Subjects Funding Program  of the State Key Laboratory of Intelligent Manufacturing Equipment and Technology in 2023,China(No.IMETKF2023015),the Humanities and Social Science  Research Foundation of Ministry of Education,China(No.21YJAZH050),and the Wuhan Knowledge Innovation Special Program for Basic Research,China(No.2022010801010301).

分布式异构混合流水车间生产与运输集成调度

李颖俐1,2,刘翱1,邓旭东1+   

  1. 1.武汉科技大学管理学院
    2.华中科技大学数字制造装备与技术国家重点实验室
  • 作者简介:
    李颖俐(1991-),女,湖北襄阳人,讲师,博士,研究方向:车间调度、智能优化方法及其应用,E-mail:lyl_elena@163.com;

    刘翱(1987-),男,江西吉安人,副教授,博士,硕士生导师,研究方向:智能优化方法及其应用,E-mail:liuao@amss.ac.cn;

    +邓旭东(1964-),男,湖北云梦人,教授,硕士,硕士生导师,研究方向:物流系统优化与决策,通讯作者,E-mail:dengxudong@wust.edu.cn。
  • 基金资助:
    湖北省自然科学基金青年项目(2023AFB088);智能制造装备与技术全国重点实验室2023年开放课题资助项目(IMETKF2023015);教育部人文社会科学研究规划基金资助项目(21YJAZH050);武汉市知识创新专项项目基础研究资助项目(2022010801010301)。

Abstract: To optimize the integrated production and logistics scheduling problem with multi-shop collaboration,a multi-objective artificial bee colony algorithm and optimization strategy were proposed.The optimization algorithm adopted three-layer encoding method to represent the shop sequence,job sequence and machine speed,and combined the factory allocation rule,machine selection strategy and Automated Guided Vehicle (AGV) allocation rule to obtain a feasible solution to the problem.The employed bee stage designed a clustering crossover operation based on distance selection to ensure population diversity and the quality of solution.The onlooker bee stage adopted a neighborhood search method based on critical factory to achieve efficient search in the huge solution space.The scout bee stage constructed an energy-saving scheduling strategy based on machine speed and the sequence of job transportation to enrich the set of non-dominated solutions.Compared with the classical multi-objective evolutionary algorithm,the numerical experimental results showed the effectiveness and superiority of the proposed algorithm.

Key words: distributed heterogeneous hybrid flow shop, automated guided vehicle, energy consumption, artificial bee colony algorithm, multi-objective optimization

摘要: 为了优化多车间协同的生产与物流集成调度问题,提出一种多目标人工蜂群算法和优化策略。优化算法采用三层编码表示车间序列、工件序列及机器档位,结合车间分配规则、机器选择策略及自动导引运输车分配规则获得问题可行解。雇佣蜂阶段设计一种基于距离选择的聚类交叉操作,保证种群多样性和解的质量;观察蜂阶段采用了基于关键车间的邻域搜索方法,在庞大解空间中实现高效搜索。侦查蜂阶段基于机器档位和工件运输顺序构建了节能调度策略,丰富非支配解集合。对比经典多目标进化算法,数值实验结果显示所提算法的有效性与优越性。

关键词: 分布式异构混合流水车间, 自动导引运输车, 能耗, 人工蜂群算法, 多目标优化

CLC Number: