Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (11): 4044-4054.DOI: 10.13196/j.cims.2023.0450

Previous Articles     Next Articles

Discrete particle swarm optimization algorithm for solving unrelated parallel machines scheduling problem with working-age maintenance

GAO Jia,TAN Yuanyuan,LI Dong,ZHANG Jun,WANG Yanhong+   

  1. School of Artificial Intelligence,Shenyang University of Technology
  • Online:2025-11-30 Published:2025-12-04
  • Supported by:
    Project supported by the Young Scientists Fund of the National Natural Science Foundation,China(No.51905196),the Key Research and Development Project of Liaoning Provincial Department of Education,China(No.LJKZZ20220021),and the Young and Middle-aged Scientific and Technological Innovation Talent Project of Shenyang City,China(No.RC20257).

离散粒子群算法求解带役龄维护的不相关并行机调度问题

高佳,谭园园,李冬,张俊,王艳红+   

  1. 沈阳工业大学人工智能学院
  • 作者简介:
    高佳(1999-),女,辽宁大连人,博士研究生,研究方向:智能优化调度、智能优化算法,E-mail:gaojia_acade@smail.sut.edu.cn;

    谭园园(1983-),女,辽宁阜新人,副教授,博士,硕士生导师,研究方向:生产调度、机器学习,E-mail:tanyuanyuan83@sina.com;

    李冬(1988-),女,辽宁新民人,工程师,研究方向:智能制造系统理论与研究方法,E-mail:lid@sut.edu.cn;

    张俊(1986-),男,蒙古族,辽宁沈阳人,副教授,博士,硕士生导师,研究方向:生产调度、智能优化方法,E-mail:zhangjunroger@163.com;

    +王艳红(1967-),女,辽宁沈阳人,教授,博士,博士生导师,研究方向:生产调度、机器智能、智能制造系统理论与方法,通讯作者,E-mail:wangyh@sut.edu.cn。
  • 基金资助:
    国家自然科学基金青年科学基金资助项目(51905196),辽宁省教育厅重点研发资助项目(LJKZZ20220021),沈阳市中青年科技创新人才资助项目(RC20257)。

Abstract: Conventional unrelated parallel machine scheduling typically ignores machines' reliability loss during machine processing,resulting in production interruptions due to excessive machine deterioration.Aiming at this problem,an integrated scheduling model that joint the scheduling scheme and Preventive Maintenance(PM)strategy was constructed by taking the jobs allocation and the machine working age threshold as the decision variables,and a hybrid discrete particle swarm algorithm(HDPSO)was designed to solve it.HDPSO redefined the particle position update mechanism in the solution space based on two-dimensional coding,and a multi-neighborhood search strategy was incorporated to balance the exploration and development capabilities in the discrete solution space,which achieved the synergistic optimization of scheduling and PM in the maximum completion time index.Extensive simulation demonstrated that HDPSO had a high effectiveness in solving large scale unrelated parallel machine scheduling problems.Meanwhile,the proposed working age maintenance strategy was more conducive to increase productivity and scheduling performance than periodical maintenance.

Key words: preventive maintenance, unrelated parallel machine, working-age maintenance, discrete particle swarm optimization algorithm

摘要: 传统不相关并行机调度通常忽略机器可靠度在加工过程中的损耗,导致机器因劣化过度而带来生产中断。针对该问题,以工件分配与机器役龄阈值为决策变量,构建将调度方案与维护策略进行协同优化的集成调度模型,并设计一种混合离散粒子群算法对模型进行求解。该算法基于二维编码方式对粒子的位置更新机制进行重新定义,并融入多邻域搜索策略平衡算法在离散解空间内的探索与开发能力,实现调度与维护二者在最大完工时间指标上的协同优化。大量仿真结果验证了所提算法在求解大规模不相关并行机调度问题方面具有较强的搜索优势。同时,所提的役龄维护策略相较于定周期维护而言更有助于提升生产效率,改善调度性能。

关键词: 预防性维护, 不相关并行机, 役龄维护, 离散粒子群算法

CLC Number: