计算机集成制造系统 ›› 2025, Vol. 31 ›› Issue (12): 4481-4492.DOI: 10.13196/j.cims.2024.Z59

• • 上一篇    下一篇

大语言模型增强知识图谱链式推理的转炉废钢精细配比推荐方法

陈宇轩1,杨文军2,代碧波2,鄢威3+,彭志华4,张华1,5,江志刚1   

  1. 1.武汉科技大学机械传动与制造工程湖北省重点实验室
    2.宝钢股份武汉钢铁有限公司
    3.武汉科技大学汽车与交通工程学院
    4.宝钢股份中央研究院武钢有限技术中心
    5.武汉科技大学绿色制造工程研究院
  • 出版日期:2025-12-31 发布日期:2026-01-07
  • 作者简介:
    陈宇轩(1997-),男,湖北武汉人,博士研究生,研究方向:绿色制造、智能制造,E-mail:ChenYuxuan@wust.edu.cn;

    杨文军(1977-),男,湖北仙桃人,工程师,本科,研究方向:智慧制造、绿色制造等,E-mail:yangwenjun@baosteel.com;

    代碧波(1984-),男,四川泸州人,工程师,本科,研究方向:智慧制造、绿色制造、冶金流程工程等,E-mail:DaiBiBo315@163.com;

    +鄢威(1981-),男,湖北天门人,教授,博士,博士生导师,研究方向:绿色制造与再制造、智能制造、智慧物流等,通讯作者,E-mail:yanwei81@wust.edu.cn;

    彭志华(1980-),男,江西鹰潭人,工程师,本科,研究方向:智能优化、智慧制造等,E-mail:pengzhihua@baosteel.com;

    张华(1964-),女,广东蕉岭人,教授,博士,博士生导师,研究方向:绿色制造、制造系统工程、制造业信息化等,E-mail:zhanghua403@163.com;

    江志刚(1978-),男,湖北京山人,教授,博士,博士生导师,研究方向:绿色设计与制造技术、绿色回收与智能拆解技术、智能制造工艺与装备,E-mail:jiangzhigang@wust.edu.cn。
  • 通讯作者简介:鄢威(1981-),男,湖北天门人,教授,博士,博士生导师,研究方向:绿色制造与再制造、智能制造、智慧物流等,通讯作者,E-mail:yanwei81@wust.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52575594,52375508)。

LLM-enhanced KG chain reasoning method for refined converter scrap proportioning recommendation

CHEN Yuxuan1,YANG Wenjun2,DAI Bibo2,YAN Wei3+,PENG Zhihua4,ZHANG Hua1,5,JIANG Zhigang1   

  1. 1.Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering,Wuhan University ofScience and Technology
    2.Baosteel Wuhan Iron and Steel Co.,Ltd.
    3.School of Automobile and Traffic Engineering,Wuhan University of Science and Technology
    4.R&D Center of Wuhan Iron & Steel Co.,Ltd.,Baosteel Central Research Institute
    5.Academy of Green Manufacturing Engineering,Wuhan University of Science and Technology
  • Online:2025-12-31 Published:2026-01-07
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.52575594,52375508).

摘要: 针对转炉废钢配比高度依赖专家经验,历史冶炼知识难以高效重用所导致的废钢配比决策难题,提出一种大语言模型(LLM)增强知识图谱(KG)链式推理的转炉废钢精细配比推荐方法。首先,提出基于逻辑链与邻域检索的查询分解与推理方法,通过定义四类一阶逻辑查询并设计查询分解方法,将涉及多跳推理的废钢配比查询分解为单跳推理子逻辑查询序列,以提升推理的准确性与稳定性;进一步设计基于邻域检索的推理策略,通过优先遍历查询实体的邻域子图,以提升推理效率。其次,构建一种LLM增强KG链式推理架构,通过构造结构化提示模板,将相关子图与子逻辑查询序列分别转换为上下文提示与问题提示链,引导LLM在KG上逐步推理,依次求解各子逻辑查询,并整合中间结果,生成符合实际冶炼需求的废钢配比推荐方案。最后,通过某钢厂转炉冶炼案例对所提方法进行了验证。结果表明,所提出的KG-LLM架构能有效提升废钢配比决策精度,尤其在引入链式推理机制后性能进一步改善,说明了所提方法的有效性与优越性。

关键词: 废钢精细配比推荐, 大语言模型, 知识图谱, 链式推理, 转炉炼钢

Abstract: Aiming at the problem that the converter scrap proportioning heavily relies on expert experience and historical smelting knowledge is difficult to reuse efficiently,making it challenging to adapt to dynamically changing smelting conditions,a Large Language Model(LLM) enhanced Knowledge Graph(KG) chain reasoning method for refined converter scrap proportioning recommendation was proposed.Based on logical chain decomposition,a query decomposition and reasoning method and neighborhood retrieval was proposed.By defining four types of first-order logical queries and designing a query decomposition method,complex multi-hop reasoning scrap proportioning queries were decomposed into sequences of single-hop reasoning sub-queries to improve KG reasoning accuracy and stability.Furthermore,a neighborhood retrieval-based reasoning strategy was designed to enhance KG reasoning efficiency by prioritizing the traversal of subgraphs in the neighborhood of the queried entities.Then,an LLM-enhanced KG chain reasoning architecture was constructed.By constructing structured prompt templates,the relevant subgraphs and sub-logical query sequences were converted into contextual prompts and chained problem prompts respectively,which guided LLM to perform step-by-step reasoning on the KG,thus the sub-logical queries were solved sequentially,and the intermediate results were integrated to generate scrap proportioning recommendation schemes that met practical smelting requirements.Finally,the proposed method was validated using a converter smelting case from a steel plant,and the results demonstrated that the proposed KG-LLM architecture effectively improved the decision-making accuracy for scrap steel proportioning,with performance further enhanced particularly after introducing the chain-of-thought mechanism,confirming the effectiveness and superiority of the proposed method.

Key words: scrap refined proportion recommendation, large language model, knowledge graph, chain reasoning, converter steelmaking

中图分类号: