计算机集成制造系统 ›› 2025, Vol. 31 ›› Issue (12): 4493-4512.DOI: 10.13196/j.cims.2024.Z19

• • 上一篇    下一篇

考虑废旧产品拆解不确定的选择性拆解任务规划

刘佳宜1,2,涂小飞1,2,徐文君1,2+,王远达1,2,陆天慧1,2   

  1. 1.武汉理工大学信息工程学院
    2.宽带无线通信与传感器网络湖北省重点实验室
  • 出版日期:2025-12-31 发布日期:2026-01-07
  • 作者简介:
    刘佳宜(1991-),男,湖北孝感人,副教授,博士生导师,研究方向:人工智能、智能制造、数字孪生等,E-mail:jyliu@whut.edu.cn;

    涂小飞(2000-),男,湖北黄冈人,硕士研究生,研究方向:人工智能、智能制造等,E-mail:xiaofeitu@whut.edu.cn;

    +徐文君(1983-),男,广东和平人,教授,博士生导师,研究方向:智能协同制造、数字孪生、工业智能、人机协作、工业互联网等,通讯作者,E-mail:xuwenjun@whut.edu.cn;

    王远达(2002-),男,辽宁阜新人,硕士研究生,研究方向:人工智能、智能制造等,E-mail:yuandawang@whut.edu.cn;

    陆天慧(2001-),男,江苏南通人,硕士研究生,研究方向:人工智能、智能制造等,E-mail:lth2024305375@whut.edu.cn。
  • 通讯作者简介:徐文君(1983-),男,广东和平人,教授,博士生导师,研究方向:智能协同制造、数字孪生、工业智能、人机协作、工业互联网等,通讯作者,E-mail:xuwenjun@whut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52205538);湖北省自然科学基金资助项目(2021CFB044);国防基础科研计划资助项目(JCKY2023206B022);武汉市知识创新专项(曙光计划)资助项目(2023010201020313)。

Selective disassembly task planning considering disassembly uncertainty of end-of-life products

LIU Jiayi1,2,TU Xiaofei1,2,XU Wenjun1,2+,WANG Yuanda1,2,LU Tianhui1,2   

  1. 1.School of Information Engineering,Wuhan University of Technology
    2.Hubei Provincial Key Laboratory of Broadband Wireless Communication and Sensor Networks
  • Online:2025-12-31 Published:2026-01-07
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.52205538),the Hubei Provincial Natural Science Foundation,China(No.2021CFB044),the Defense Industrial Technology Development Program,China(No.JCKY2023206B022),and the Knowledge Innovation Program of Wuhan-Shuguang Project,China(No.2023010201020313).

摘要: 针对废旧产品拆解时零件缺失和不可拆因素造成拆解任务预规划方案适用性差的问题,提出考虑废旧产品拆解不确定的选择性拆解任务规划方法。首先,构建考虑零件缺失和不可拆因素的拆解约束模型,结合机器人与工人拆解任务执行特点,提出基于多维度属性的拆解任务分配方法。此后,构建了选择性拆解任务规划问题数学模型,并结合基于可行拆解零件组合集合的可变邻域搜索方法,利用改进型离散蜜蜂算法,生成选择性拆解任务规划问题的最优方案。最后,以动力电池和齿轮箱为拆解对象,在不同算法参数、邻域搜索策略、拆解因素等条件下验证所提方法的有效性,并比较分析所提算法与其他算法的性能。结果表明,所提方法具有更好的求解性能和较好的稳定性。

关键词: 废旧产品, 选择性拆解, 拆解任务规划, 蜜蜂算法

Abstract: Regarding the problem that the pre-planned solution of disassembly task for end-of-life products suffers from poor applicability due to missing parts and non-removable parts,a selective disassembly task planning method considering the disassembly uncertainty of end-of-life products was proposed.The disassembly constraint model considering factors such as missing and non-removable parts was constructed.Combined with the robotic and operator's disassembly task execution characteristics,a disassembly task allocation method based on multidimensional attributes was proposed.Afterwards,a mathematical model for the selective disassembly task planning problem was constructed.By integrating the variable neighborhood search method based on feasible disassembly part combination sets,the improved discrete bee algorithm was used to generate optimal solution of selective disassembly task planning problem.Finally,to disassemble the power battery and gearbox,the effectiveness of proposed method was verified under the conditions of different algorithm parameters,different neighborhood search strategies,and different disassembly factors,and the performance of the proposed algorithm was compared with other algorithms.The results showed that the proposed method had better performance and good stability.

Key words: end-of-life products, selective disassembly, disassembly task planning, bee algorithm

中图分类号: