计算机集成制造系统 ›› 2025, Vol. 31 ›› Issue (12): 4441-4458.DOI: 10.13196/j.cims.2024.0426

• • 上一篇    下一篇

基于混合微调大模型的变工况机械加工能耗预测方法

张华1,2,张美航1,2,鄢威3+,江志刚1,朱硕2,马峰2   

  1. 1.武汉科技大学机械传动与制造工程湖北省重点实验室
    2.武汉科技大学冶金装备与控制技术教育部重点实验室
    3.武汉科技大学汽车与交通工程学院
  • 出版日期:2025-12-31 发布日期:2026-01-07
  • 作者简介:
    张华(1964-),女,广东蕉岭人,教授,博士,博士生导师,研究方向:绿色制造、制造系统工程、制造业信息化等,E-mail:zhanghua403@163.com;

    张美航(1986-),女,湖北黄冈人,博士研究生,研究方向:绿色制造、智能制造,E-mail:zhangmeihang@wust.edu.cn;

    +鄢威(1981-),男,湖北天门人,教授,博士,博士生导师,研究方向:绿色制造、智能制造、高能效制造,通讯作者,E-mail:yanwei81@wust.edu.cn;

    江志刚(1978-),男,湖北京山人,教授,博士,博士生导师,研究方向:绿色设计与制造技术、绿色回收与智能拆解技术、智能制造工艺与装备,E-mail:jiangzhigang@wust.edu.cn;

    朱硕(1989-),男,湖北天门人,副教授,博士,硕士生导师,研究方向:绿色制造与再制造、智能再制造工艺与装备,E-mail:zhushuo@wust.edu.cn;

    马峰(1989-),男,湖北襄阳人,副教授,博士,硕士生导师,研究方向:绿色低碳制造、制造系统能效,E-mail:mf902@wust.edu.cn。
  • 通讯作者简介:鄢威(1981-),男,湖北天门人,教授,博士,博士生导师,研究方向:绿色制造、智能制造、高能效制造,通讯作者,E-mail:yanwei81@wust.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52375508,51975432,52075396);武汉科技大学“十四五”湖北省优势特色学科资助项目 (2023B0405);湖北省科技重大项目(2023BCA006)。

Energy consumption prediction method for variable conditions machining based on hybrid fine-tuning large model

ZHANG Hua1,2,ZHANG Meihang1,2,YAN Wei3+,JIANG Zhigang1,ZHU Shuo2,MA Feng2   

  1. 1.Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering,Wuhan University of Science and Technology
    2.Key Laboratory of Metallurgical Equipment and Control Technology,Ministry of Education,Wuhan University of Science and Technology
    3.School of Automotive and Traffic Engineering,Wuhan University of Science and Technology
  • Online:2025-12-31 Published:2026-01-07
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.52375508,51975432,52075396),the 14th Five Year Plan Hubei Provincial Advantaged Characteristic Disciplines(Groups)Project of Wuhan University of Science and Technology,China(No.2023B0405),and the Major Project of Hubei Provincial Science and Technology,China(No.2023BCA006).

摘要: 针对现代机械加工中设备、环境、参数等非线性耦合强,以及工况数据分布极不均衡导致的能耗预测难题,提出了一种创新的基于混合微调大模型的变工况机械加工能耗预测方法。首先,设计了一种包括清洗、重构、扩展与抽样的数据预处理方法,构建了全工况与暂态工况能耗数据集,为模型训练提供了高质量数据输入。其次,提出了全参数微调(FPFT)和参数高效微调(PEFT)策略的两阶段混合微调技术,通过全工况能耗数据对大模型进行全参数微调训练,提高了模型的泛化能力和可解释性,同时利用暂态工况能耗数据对大模型进行参数高效微调,解决了变工况下的加工能耗预测难题。实验结果表明,相较于单独微调技术,所提方法在实验数据集上的性能指标MSE和MAE分别降低了70.42%和42.45%以上。与现行基于深度学习的能耗预测方法相比,所提方法更贴近实际变工况机械加工的能耗特性,展现出卓越的性能优势。所提方法可为大模型在机械加工领域的应用提供了有力支撑,展现了广阔的应用前景。

关键词: 大语言模型, 混合微调, 变工况机械加工, 能耗预测

Abstract: To address the challenges in energy consumption prediction for modern machining,caused by strong nonlinear coupling among equipment,environment and parameters,as well as highly imbalanced data sample distributions,a hybrid fine-tuning large model-based method for variable conditions machining energy consumption prediction was proposed.A data preprocessing approach involving data cleaning,reconstruction,expansion and sampling was designed to establish comprehensive and transient conditions energy consumption datasets.A two-stage hybrid fine-tuning technique with Full Parameter Fine-Tuning(FPFT) and Parameter Efficient Fine-Tuning(PEFT) strategies was proposed.The FPFT training of the large model by full-operating-condition energy consumption data improved the generalization ability and interpretability of the model,while the PEFT of the large model by using transient-operating-condition energy consumption data solved the difficult problem of predicting the processing energy consumption under variable operating conditions.Experimental results demonstrated that the proposed hybrid fine-tuning method significantly outperformed individual techniques,reducing MSE by over 70.42% and MAE by 42.45%.Compared to existing deep learning-based energy consumption prediction methods,the proposed approach more accurately reflected actual energy consumption in variable machining conditions,exhibiting superior performance,which could support the application of large models in the machining field,indicating promising prospects.

Key words: large language model, hybrid fine-tuning, variable conditions machining, energy consumption prediction

中图分类号: