Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (10): 3513-3525.DOI: 10.13196/j.cims.2024.S02

    Next Articles

Improved deep Q network-based resource scheduling mechanism in cloud-edge-terminal collaborative environments

PAN Peiyan1,HU Bingtao1,FENG Yixiong1,2,ZHANG Zhifeng1+,WANG Yong3,LI Chuanjiang2,TAN Jianrong1   

  1. 1.State Key Laboratory of Fluid Power and Mechatronic Systems,Zhejiang University
    2.State Key Laboratory of Public Big Data,Guizhou University
    3.School of Computer Science,Hangzhou Dianzi University
  • Online:2025-10-31 Published:2025-10-31
  • Supported by:
    Project supported by the National Key R&D Program,China (No.2023YFB3307200),the Key R&D Program of Zhejiang Province,China(No.2024C01029,2024C01207),the National Natural Science Foundation,China (No.52205288),and the China Postdoctoral Science Foundation,China(No.2024T170795).

云-边-端协同环境下基于改进深度Q网络的资源调度机制

泮佩言1,胡炳涛1,冯毅雄1,2,张志峰1+,汪勇3,李传江2,谭建荣1   

  1. 1.浙江大学流体动力基础件与机电系统全国重点实验室
    2.贵州大学公共大数据国家重点实验室
    3.杭州电子科技大学计算机学院
  • 作者简介:
    泮佩言(1997-),男,浙江台州人,博士研究生,研究方向:机械设计与边缘计算、人工智能等,E-mail:ppeiyan@zju.edu.cn;

    胡炳涛(1992-),男,山东烟台人,副研究员,博士,研究方向:产品设计理论与智能制造、边缘计算等,E-mail:hubingtao@zju.edu.cn;

    冯毅雄(1975-),男,浙江东阳人,教授,博士,博士生导师,研究方向:机械设计与智能制造等,E-mail:fyxtv@zju.edu.cn;

    +张志峰(1991-),男,青海湟源人,助理研究员,博士,研究方向:产品数字化设计与智能制造等,通讯作者,E-mail:zhzhfengv@zju.edu.cn;

    汪勇(1989-),男,安徽舒城人,博士后,研究方向:计算调度优化、人工智能模型推理加速等,E-mail:yongw@hdu.edu.cn;

    李传江(1995-),男,山西临汾人,博士,研究方向:工业大数据、智能制造、工业5.0,E-mail:licj@gzu.edu.cn;

    谭建荣(1954-),男,浙江湖州人,中国工程院院士,教授,博士,博士生导师,研究方向:复杂装备数字化设计与制造、产品服务系统与绿色制造、企业信息化等,E-mail:egi@zju.edu.cn。
  • 基金资助:
    国家重点研发计划资助项目(2023YFB3307200);浙江省重点研发计划资助项目(2024C01029,2024C01207);国家自然科学基金资助项目(52205288);中国博士后科学基金资助项目(2024T170795)。

Abstract: To enhance the quality of user computing services in Industry 5.0 scenarios,a novel resource scheduling mechanism for computing power networks based on the deep reinforcement learning was proposed,which integrated cloud-edge-end collaboration by jointly addressing task scheduling and cooperative resource allocation across terminal devices,edge computing nodes,and centralized cloud infrastructures.Initially,a cloud-edge-end collaborative architecture that unified computing power networks with cloud-edge synergy was introduced.This framework reformulated the challenges of task scheduling and resource allocation into an optimization problem aimed at minimizing the overall system cost,while simultaneously satisfying constraints related to computing capacity,communication bandwidth,and energy consumption across network nodes.Subsequently,an enhanced Deep Q-Network(DQN) algorithm was developed with dynamically arriving tasks,and the innovative reward strategies,soft updates of network parameters,experience replay and a dual-network scheme were introduced to robustly learn optimal scheduling policies under varying system conditions.Experimental results demonstrated the feasibility of the proposed method,with effective performance in task scheduling and resource allocation.

Key words: cloud-edge-terminal collaborative architecture, computing power networks, task scheduling, resource allocation, deep reinforcement learning

摘要: 为了更好提升工业5.0场景下用户计算任务的服务质量,同时考虑任务调度决策以及终端设备、边缘算力服务节点、云计算中心的协同资源分配,提出一种基于深度强化学习的云-边-端协同的算力网络资源调度机制。首先提出一种融合算力网络与云边协同的云-边-端协同架构,将计算任务调度与资源分配问题转化为网络节点计算、通信、能源约束下的最小系统总成本优化问题;然后提出一种考虑任务动态到达的改进深度Q网络求解该问题,并在网络学习的过程中引入新的奖励方式、网络参数软更新、经验回放与双网络机制。通过实验验证了所提方法的可行性,在任务调度与资源分配方面性能良好。

关键词: 云边端协同架构, 算力网络, 任务调度, 资源分配, 深度强化学习

CLC Number: