Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (5): 1817-1828.DOI: 10.13196/j.cims.2024.BPM11

Previous Articles     Next Articles

Decomposition process discovery method based on footprint matrix

LIU Xin1,WANG Lu1+,WANG Kang2,LIU Cong1,3,DU Yuyue1   

  1. 1.College of Computer Science and Engineering,Shandong University of Science and Technology
    2.College of Electronic Information Engineering,Shandong University of Science and Technology
    3.School of Computer Science and Engineering,Shandong University of Technology
  • Online:2025-05-31 Published:2025-06-06
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.61902222),the Taishan Scholars Program of Shandong Province,China(No.ts20190936,tsqn201909109),the Natural Science Excellent Youth Foundation of Shandong Province,China(No.ZR2021YQ45),the Humanities and Social Science Research Youth Fund of Ministry of Education,China(No.20YJCZH159),the Natural Science Foundation Youth Fund of Shandong Province,China(No.ZR2022QF020),the Youth Innovation Science and Technology Team Foundation of Shandong Provincial Higher School,China(No.QC2021948080),and the Qingdao Social Science Planning Research Project in 2024,China(No.QDSKL2401103).

基于足迹矩阵的分解模型挖掘方法

刘鑫1,王路1+,王康2,刘聪1,3,杜玉越1   

  1. 1.山东科技大学计算机科学与工程学院
    2.山东科技大学电子信息工程学院
    3.山东理工大学计算机科学与技术学院
  • 作者简介:
    刘鑫(2000-),女,河南新乡人,硕士研究生,研究方向:流程挖掘、业务流程管理等,E-mail:1075573797@qq.com;

    +王路(1989-),女,山东泰安人,讲师,博士,研究方向:流程挖掘、业务流程管理、工作流等,通讯作者,E-mail:wanglu253@126.com;

    王康(1998-),男,山东青岛人,硕士研究生,研究方向:流程挖掘、业务流程管理等,E-mail:wangkang1402@163.com;

    刘聪(1990-),男,山东淄博人,教授,博士,研究方向:业务流程管理、业务流程建模、流程挖掘、人工智能等,E-mail:liucongchina@163.com;

    杜玉越(1960-),男,山东聊城人,教授,博士,研究方向:流程挖掘、工作流、Petri网理论及应用等,E-mail:yydu001@163.com。
  • 基金资助:
    国家自然科学基金资助项目(61902222);山东省泰山学者工程专项基金资助项目(ts20190936,tsqn201909109);山东省自然科学基金优秀青年基金资助项目(ZR2021YQ45);教育部人文社会科学研究项目(青年基金)资助项目(20YJCZH159);山东省自然科学基金(青年基金)资助项目(ZR2022QF020);山东省高等学校青创科技计划创新团队资助项目(QC2021948080);2024年度青岛市社会科学规划研究资助项目(QDSKL2401103)。

Abstract: Process discovery is one of the important areas of process mining research,and its goal is to generate business process models by analyzing event logs.However,existing process discovery methods are inefficient when dealing with large-scale logs.To better analyze the models and improve efficiency,the decomposition process discovery has become a hot topic in the research field,aiming to decompose complex process models into smaller and simpler sub-models.Refined Process Structure Tree (RPST) is a graph decomposition technique that takes a directed graph as input and a hierarchical tree structure composed of single-input and single-output segments as output.However,the application of RPST to mine the model lacks in quality.To overcome the shortcomings of the existing methods and to improve the quality of the model,a decomposition process discovery method based on footprint matrix was proposed.The footprint matrix was obtained based on the order relationship between logs,and the concept of Relation-Refined Process Structure Tree (R-RPST) was proposed for decomposing the causal dependency graph between activities.According to the decomposed picture segments,the sub-logs were generated,and the sub-models were obtained using existing mining methods.Finally,sub-models were merged based on the footprint matrix to determine the branching structure of boundary activities.The proposed method had been implemented based on the ProM platform,and experiments were conducted to compare the proposed method with existing process discovery methods using publicly available real logs and simulated logs such as BPI Challenge and ETM.The experimental results showed that the proposed method was time efficient and the obtained models were of high quality.

Key words: process discovery, decomposition, refined process structure tree, footprint matrix

摘要: 模型挖掘是流程挖掘研究的重要领域之一,其目标是通过分析事件日志生成业务流程模型。然而,现有模型挖掘方法在处理大规模日志时效率较低。为更好地分析模型并提高效率,分解模型挖掘成为研究领域的热点,旨在将复杂流程模型分解为更小、更简单的子模型。精简流程结构树(RPST)是一种以有向图为输入,以单入单出片段构成的层次树状结构为输出的图分解技术。但应用RPST挖掘模型在质量上有所欠缺,为克服现有方法的不足并提高模型质量,提出基于足迹矩阵的分解模型挖掘方法。根据日志间次序关系得到足迹矩阵,提出关系精简流程结构树(R-RPST)的概念,用于分解活动间因果依赖图。根据分解后的图片段生成子日志,利用已有挖掘方法得到子模型,最后基于足迹矩阵判断边界活动的分支结构合并子模型。所提方法已基于ProM平台实现,利用BPI Challenge、ETM等公开真实日志及仿真日志与已有模型挖掘方法进行对比实验。结果表明,所提方法时间效率较高,得到的模型质量较高。

关键词: 模型挖掘, 分解, 精简流程结构树, 足迹矩阵

CLC Number: