Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (4): 1205-1214.DOI: 10.13196/j.cims.2023.0603

Previous Articles     Next Articles

Dual-layer optimization of shovel-digging performance for wheel loaders based on improved Kriging model

MA Jun,FU Jiawen,YE Hongwei,CAO Yang+,LI Xiaoke,XU Yapeng   

  1. Henan Provincial Key Laboratory of Intelligent Manufacturing of Mechanical Equipment,Zhengzhou University of Light Industry
  • Online:2025-04-30 Published:2025-05-08
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.51905492),the Key Science and Technology Research Projects in Henan Province,China(No.242102220011,252102240053),and the Key Scientific Research Project Plan of Higher Education Institutions in Henan Province,China(No.25A460001).

基于改进Kriging模型的轮式装载机铲掘性能双层优化

马军,付佳文,叶红伟,曹阳+,李晓科,许亚鹏   

  1. 郑州轻工业大学机械装备智能制造河南省重点实验室
  • 作者简介:
    马军(1977-),男,湖北石首人,教授,博士生导师,研究方向:大规模定制设计、绿色制造等,E-mail:majun@zzuli.edu.cn;

    付佳文(1998-),男,河南新乡人,硕士研究生,研究方向:数字化设计与制造,E-mail:1269340044@qq.com;

    叶红伟(1998-),男,江西九江人,硕士研究生,研究方向:数字化设计与制造,E-mail:1748200670@qq.com;

    +曹阳(1987-),女,河南开封人,副教授,博士,硕士生导师,研究方向:数值建模与仿真优化,通讯作者,E-mail:caoyang8786@126.com;

    李晓科(1987-),男,河南灵宝人,副教授,博士,硕士生导师,研究方向:可靠性设计与数字化制造,E-mail:lixiaoke@zzuli.edu.cn。

    许亚鹏(1994-),男,河南登封人,讲师,博士,研究方向:机械设计方法学,E-mail:2022037@zzuli.edu.cn。
  • 基金资助:
    国家自然科学基金资助项目(51905492);河南省科技攻关资助项目(242102220011,252102240053);河南省高等学校重点科研项目计划(25A460001) 。

Abstract: Aiming at the dual-layer nonlinear implicit optimization problem of shoveling performance of wheel loader in dynamic uncertain environment,taking the segmented shoveling ore particle pile as a typical working condition,EDEM-ADAMS co-simulation was used to obtain the influencing factors of shoveling performance,and the hyperparameters of Kriging model were optimized by differential evolution cuckoos algorithm.An improved Kriging model for shovel performance of wheel loaders was constructed.On this basis,with the maximum full bucket rate as the upper goal and the minimum shovel resistance as the lower goal,a dual-layer optimization model of wheel loader shovel performance was established,and the whale algorithm was used to solve the problem.After optimization,the full bucket rate was increased by 28.8%,and the shovel resistance was reduced by 10.5%.Compared with the traditional multi-objective optimization method,the shovel resistance was reduced by 17%,and the full bucket rate was increased by 6.5%,which verified the effectiveness and advancement of the proposed method.

Key words: wheel loader, excavating performance, Kriging model, hyperparameters, dual-layer optimization

摘要: 针对动态不确定环境下轮式装载机铲掘性能双层非线性隐式优化问题,以分段式铲掘矿石颗粒料堆为典型工况,采用EDEM-ADAMS联合仿真获取铲掘性能影响因子,通过差分进化布谷鸟算法优化Kriging模型的超参数,构建轮式装载机铲掘性能的改进Kriging模型。在此基础上,以最大满斗率为上层目标、最小铲掘阻力为下层目标,建立轮式装载机铲掘性能双层优化模型,并采用鲸鱼算法进行求解。优化后满斗率提升了28.8%,铲掘阻力降低了10.5%。与传统多目标优化方法相比,铲掘阻力降低了17%,满斗率提高了6.5%,从而验证了所提方法的有效性和先进性。

关键词: 轮式装载机, 铲掘性能, Kriging模型, 超参数, 双层优化

CLC Number: