Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (4): 1215-1227.DOI: 10.13196/j.cims.2024.0199

Previous Articles     Next Articles

Interpretable prediction of joint performance inresistance spot welding based on NSGA-Ⅲ-EBM model

WANG Heng1,YANG Kai1+,HE Yicheng1,2,HUANG Haisong1,CHEN Jiadui1,GAO Xin1,3   

  1. 1.Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education,Guizhou University
    2.Wenzhou Polytechnic
    3.School of Mechanical Engineering,Guizhou University
  • Online:2025-04-30 Published:2025-05-08
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.52265062),the Guizhou Provincial Science and Technology Program,China(No.Qiankehejichu-ZD[2025]099,Qiankehejichu-MS[2025]620,Qiankehezhicheng[2023]-General 302),and the Innovation and Entrepreneurship Training Program for College Students,China(No.gzugc2023032,gzugc2023033).

基于NSGA-Ⅲ-EBM模型的电阻点焊接头性能可解释预测

王恒1,杨凯1+,何奕程1,2,黄海松1,陈家兑1,高鑫1,3   

  1. 1.贵州大学现代制造技术教育部重点实验室
    2.温州职业技术学院
    3.贵州大学机械工程学院
  • 作者简介:
    王恒(1998-),男,贵州大方人,硕士研究生,研究方向:焊接智能制造技术,E-mail:1558140658@qq.com;

    +杨凯(1986-),男,江西上饶人,副教授,博士,研究方向:先进制造技术及智能装备领域研究、数字孪生,通讯作者,E-mail:kyang3@gzu.edu.cn;

    何奕程(1996-),男,浙江温州人,讲师,硕士,研究方向:焊接智能制造技术,E-mail:yc__he@126.com;

    黄海松(1977-),女,彝族,贵州大方人,教授,博士,研究方向:制造物联与制造大数据、数字孪生,E-mail:hshuang@gzu.edu.cn;

    陈家兑(1979-),男,广西玉林人,副教授,博士,研究方向:智能制造、制造大数据分析、数字孪生建模,E-mail:jdchen1@gzu.edu.cn;

    高鑫(2001-),女,山东青岛人,本科生,研究方向:焊接过程智能监控技术,E-mail:1979663443@qq.com。
  • 基金资助:
    国家自然科学基金资助项目(52265062);贵州省科技计划资助项目(黔科合基础ZD[2025]099,黔科合基础MS[2025]620,黔科合支撑[2023]一般302);大学生创新创业训练计划资助项目(gzugc2023032,gzugc2023033)。

Abstract: Based on the welding process information,the machine learning model quality prediction method is the main way to realize the reliable assessment of the performance of welded joints in power lithium battery packs.To address the issues of unreasonable hyperparameter selection and poor interpretability in traditional machine learning models,a process information dataset for lithium battery resistance spot welding was established.A machine learning model for joint performance prediction was constructed,and the prediction performances of different machine learning models on a small dataset of resistance spot welding were compared and analyzed.The NSGA-Ⅲ-EBM model was proposed based on the third-generation Non-dominated Sorted Genetic Algorithm (NSGA-Ⅲ).The generalizability of the NSGA-Ⅲ-EBM model to different feature data was investigated,and the input features were analyzed both globally and locally.The results indicated that,for predicting the welded joint's kernel diameter and tensile shear load,the EBM model outperformed the MLP,MLS-SVR,and XGBoost models,achieving an average RMSE and R2 of 2.4127 and 0.8466,respectively on the test set.After hyperparameter optimization using NSGA-Ⅲ,the NSGA-Ⅲ-EBM model improved the average RMSE and R2 on the test set by 17.2% and 2.1%,respectively,compared to the unoptimized EBM model.Additionally,important features that affected joint performance were identified,providing a basis for the dynamic adjustment of welding process parameters.

Key words: resistance spot welding, joint performance, interpretable model, hyperparameter optimization

摘要: 基于焊接过程信息和机器学习模型的质量预测方法,是实现动力锂电池组焊接接头性能可靠评估的主要途径。为解决传统机器学习模型存在的超参数选择不合理和预测结果可解释性差等问题,建立了锂电池电阻点焊过程信息数据集,构建了接头性能预测机器学习模型,对比分析了不同机器学习模型对电阻点焊小样本数据集的预测性能;基于第三代非支配排序遗传算法(NSGA-Ⅲ)提出了NSGA-Ⅲ-EBM模型,研究了NSGA-Ⅲ-EBM模型对不同特征数据的泛化性,并对输入特征进行了全局解释和局部解释分析。结果表明,针对焊接接头的熔核直径以及拉伸剪切载荷的预测,EBM模型相较于MLP、MLS-SVR和XGBoost模型具有更好的预测性能,在测试集上的平均RMSE、R2分别为2.4127、0.8466;采用NSGA-Ⅲ进行超参数优化后的NSGA-Ⅲ-EBM模相较于未优化的EBM模型,在测试集上的平均RMSE和R2分别提升了17.2%、2.1%;此外,还确定了影响接头性能的重要特征,为焊接工艺参数的动态调整提供了依据。

关键词: 电阻点焊, 接头性能, 可解释模型, 超参数优化

CLC Number: