Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (11): 4166-4177.DOI: 10.13196/j.cims.2023.0772

Previous Articles     Next Articles

Dynamic multi-objective workflow scheduling based on reinforcement learning in cloud environment

DONG Tingting1,CAO Dongzhi2,FAN Wenyu1,BAI Lingling3,TANG Hengliang1+   

  1. 1.School of Information,Beijing Wuzi University
    2.School of Artificial Intelligence,Beijing Institute of Economics and Management
    3.Artificial Intelligence and Intelligent Operations Center,China Mobile Communications Corporation Research Institute
  • Online:2025-11-30 Published:2025-12-05
  • Supported by:
    Project supported by the Social Science Foundation of Beijing Municipality,China(No.22GLC056).

云环境下基于强化学习的动态多目标工作流调度

董婷婷1,曹东芝2,范文宇1,白玲玲3,唐恒亮1+   

  1. 1.北京物资学院信息学院
    2.北京经济管理职业学院人工智能学院
    3.中国移动通信有限公司研究院人工智能与智慧运营中心
  • 作者简介:
    董婷婷(1992-),女,山东烟台人,讲师,博士,研究方向:多目标优化、工作流调度、人工智能等,E-mail:dongtingting@bwu.edu.cn;

    曹东芝(1990-),女,河北宁晋人,讲师,博士,研究方向:可信计算、智能优化、物联网安全等,E-mail:dzcaocwz@126.com;

    范文宇(1997-),男,山西大同人,硕士研究生,研究方向:多目标优化、工作流调度等,E-mail:fanwybwu@126.com;

    白玲玲(1991-),女,河南安阳人,工程师,硕士,研究方向:人工智能,资源调度、智能优化,E-mail:bailingling@chinamobile.com;

    +唐恒亮(1982-),男,山东阳谷人,教授,博士,硕士生导师,研究方向:智能物流、信息感知、交互和融合理论等,通讯作者,E-mail:tanghengliangbwu@163.com。
  • 基金资助:
    北京市社会科学基金资助项目(22GLC056)。

Abstract: Cloud computing is widely applied across various fields,and the workflow scheduling problem has attracted significant attention.To address the issues of diverse user demands and instability in computational resource capabilities,the workflow scheduling problem was treated as a dynamic multi-objective problem,and a dynamic adaptive cascading clustering and reference point incremental learning algorithm was proposed.By considering task completion time,cost,load,average resource utilization rate and reliability five indicators,a dynamic multi-objective workflow scheduling model was constructed.To prevent the algorithm from falling into local optima due to dynamic changes in the scheduling environment over time,the proposed algorithm introduced a restart mechanism and designed reinforcement learning for adaptive parameter selection to improve the convergence and solution diversity of the algorithm.Experiments conducted on the FDA series of test problems with known Pareto fronts and on four well-known real-world workflows,the result demonstrated that the proposed algorithm had significant advantages.

Key words: cloud computing, dynamic many-objective optimization, workflow scheduling, reinforcement learning, evolutionary algorithm

摘要: 云计算广泛应用于各个领域,其工作流调度问题备受关注。针对不同用户需求以及计算资源计算能力不稳定问题,将工作流调度问题视为动态多目标问题,并提出一种动态自适应级联聚类和参考点增量学习算法。首先,考虑任务完工时间、成本、负载、平均资源利用率和可靠性5个指标,构建动态多目标工作流调度模型;然后,针对调度环境随时间动态变化使得算法陷入局部最优的问题,所提算法引入重启机制,并设计强化学习进行自适应参数选择,以提高算法的收敛性和解的多样性。在帕累托已知的FDA系列测试问题以及4种著名的真实工作流上进行实验,结果表明本文提出的算法有显著优势。

关键词: 云计算, 动态多目标优化, 工作流调度, 强化学习, 进化算法

CLC Number: