Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (10): 3860-3871.DOI: 10.13196/j.cims.2023.0394

Previous Articles     Next Articles

Multi-channel data fusion-based adaptive prototype contrastive learning intelligent diagnosis method

SONG Qiuyu1,LI Xuegang1,JIANG Xingxing1,2+,WANG Zhijian2,HUANG Weiguo1,ZHU Zhongkui1   

  1. 1.School of Rail Transportation,Soochow University
    2.Shanxi Key Laboratory of Advanced Manufacturing Technology,North University of China
  • Online:2025-10-31 Published:2025-11-19
  • Supported by:
    Project supported by the National Natural Science Foundation ,China (No.52172406,52275157),the China Postdoctoral Science Foundation,China(No.2021M702752,2022T150552),the Prospective Application Research of Suzhou City,China (No.SYG202111),the Open Research Fund Program of Beijing Key Laboratory of Performance Guarantee on Urban Rail Transit Vehicles,China (No.PGU2020K008),and the Opening Project of Shanxi Provincial Key Laboratory of Advanced Manufacturing Technology,China (No.XJZZ202102).

多通道数据融合的自适应原型对比学习智能诊断方法

宋秋昱1,李学岗1,江星星1,2+,王志坚2,黄伟国1,朱忠奎1   

  1. 1.苏州大学轨道交通学院
    2.中北大学先进制造技术山西省重点实验室
  • 作者简介:
    宋秋昱(1997-),女,江苏泰州人,博士研究生,研究方向:机械设备状态监测与智能故障诊断,E-mail:qysongjob@stu.suda.edu.cn;

    李学岗(1999-),男,河南南乐人,硕士,研究方向:机械设备状态监测与智能故障诊断,E-mail:Lixuegang.111@gmail.com;

    +江星星(1989-),男,江西九江人,教授,博士,研究方向:机械设备状态监测与智能故障诊断,通讯作者,E-mail:jiangxx@suda.edu.cn;

    王志坚(1985-),男,河南郑州人,教授,博士,研究方向:复杂设备可靠性建模与数字孪生技术、机械装备剩余寿命预测与健康管理、数据驱动的智能诊断、机械信号处理与分析,E-mail:wangzhijian1013@163.com;

    黄伟国(1981-),男,安徽休宁人,教授,博士,研究方向:机械设备状态监测与故障诊断,E-mail:wghuang@suda.edu.cn;

    朱忠奎(1974-),男,山东梁山人,教授,博士,研究方向:车辆系统动力学与控制、旋转机械状态监测与故障诊断、振动测试与信号处理,E-mail:zhuzhongkui@suda.edu.cn。
  • 基金资助:
    国家自然科学基金资助项目(52172406,52275157);中国博士后科学基金项目(2021M702752,2022T150552);苏州市重点产业技术创新项目(SYG202111);城市轨道交通车辆服役性能保障北京市重点实验室开放课题(PGU2020K008);中北大学先进制造技术山西省重点实验室开放课题研究基金资助项目(XJZZ202102)。

Abstract: Aiming at the challenging issues including insufficient coverage and credibility of sensor single-channel condition monitoring data,different data distribution under different operating conditions and high expert annotation costs,a multi-channel data fusion-based adaptive prototype comparative learning intelligent diagnosis method was proposed to realize bearing fault diagnosis based on multi-channel data under variable operating conditions and extremely few labels.By utilizing multi-channel vibration data from sensors,a sample enhancement strategy for multi-channel information fusion was established to improve sample quality;Kullback-Leibler divergence-guided adaptive optimization of concentration coefficient for prototype comparative learning was designed,thereby more representative cross-domain transferable features being extracted through self-supervised domain adaptation;semi-supervised bearing fault classification was achieved with extremely few labeled samples in source domain.The experimental results showed that with 1% labeled data in the source domain,the proposed method achieved an average diagnostic accuracy of 97.1% or higher in 12 cross-domain diagnostic tasks for 7 bearing fault categories,which was at least 15.5%,16.6%,13.5%,14.9%,19.1% and 12.7% higher than the other 6 comparative methods respectively.

Key words: domain adaptation, intelligent bearing diagnosis, information fusion, prototype contrastive learning

摘要: 针对传感器单通道状态监测数据信息涵盖量与可信度不足、不同工况下数据分布不同、专家标注成本高昂等挑战性问题,提出多通道数据融合的自适应原型对比学习智能诊断方法,实现极少量标签下基于多通道数据的变工况轴承故障诊断。首先,利用传感器多通道振动数据,建立多通道信息融合的样本增强策略,提升样本质量;然后,设计相对熵引导集中度系数自适应优化的原型对比学习,通过自监督域适应提取更具表征力的跨域迁移特征;最后,在源域样本极少量标签的半监督下,实现轴承故障分类。实验结果表明,源域有标签数据占比1%时,在面向轴承7种故障类别的12种跨域诊断任务中,所提方法的平均诊断准确率达97.1%及以上,相比其他6种对比方法至少分别提升了15.5%、16.6%、13.5%、14.9%、19.1%和12.7%。

关键词: 域适应, 智能轴承诊断, 数据融合, 原型对比学习

CLC Number: