Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (7): 2431-2443.DOI: 10.13196/j.cims.2021.0910

Previous Articles     Next Articles

Empirical evaluation of encoding in business process remaining time prediction

XU Xingrong1,2,LIU Cong1,2+,GUO Na1,Li Ting1,LU Ting1,WEN Lijie3,ZENG Qingtian4,REN Chongguang1   

  1. 1.School of Computer Science and Technology,Shandong University of Technology
    2.Key Laboratory of Embedded System and Service Computing,Ministry of Education,Tongji University
    3.School of Software,Tsinghua University
    4.School of Computer Science and Engineering,Shandong University of Science and Technology
  • Online:2024-07-31 Published:2024-08-07
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.61902222),the Taishan Scholars Program of Shandong Province,China(No.ts20190936,tsqn201909109),the Natural Science Excellent Youth Foundation of Shandong Province,China(No.ZR2021YQ45),the Excellent Youth Innovation Team Foundation of Shandong Higher School,China(No.2021KJ031),and the Open Project of the Key Laboratory of Embedded System and Service Computing of Ministry of Education(Tongji University),China(No.ESSCKF2021-06).

编码方式对业务流程剩余时间预测影响评估

徐兴荣1,2,刘聪1,2+,郭娜1,李婷1,陆婷1,闻立杰3,曾庆田4,任崇广1   

  1. 1.山东理工大学计算机科学与技术学院
    2.同济大学嵌入式系统与服务计算教育部重点实验室
    3.清华大学软件学院
    4.山东科技大学计算机科学与工程学院
  • 作者简介:
    徐兴荣(1995-),山东济南人,硕士研究生,研究方向:过程挖掘,E-mail:Nick_xu0522@163.com;

    +刘聪(1990-),山东淄博人,教授,博士,研究方向:过程挖掘、Petri网理论与应用,通讯作者,E-mail:liucongchina@163.com;

    郭娜(1996-),山东淄博人,博士研究生,研究方向:过程挖掘,E-mail:guona_7@163.com;

    李婷(1996-),山东济宁人,硕士研究生,研究方向:过程挖掘,E-mail:Ltingoo@163.com;

    陆婷(1990-),山东淄博人,讲师,硕士,研究方向:过程挖掘,E-mail:luting6735466@163.com;

    闻立杰(1977-),河北唐山人,副教授,博士,研究方向:过程数据管理与挖掘,E-mail:wenlj@tsinghua.edu.cn;

    曾庆田(1976-),山东高密人,教授,博士,研究方向:业务过程管理,E-mail:qtzeng@sdust.edu.cn;

    任崇广(1982-),山东临沂人,教授,博士,研究方向:智能装备,E-mail:renchg@sina.com。
  • 基金资助:
    国家自然科学基金资助项目(61902222);山东省泰山学者工程专项基金资助项目(ts20190936,tsqn201909109);山东省自然科学基金优秀青年基金资助项目(ZR2021YQ45);山东省高等学校青创科技计划创新团队资助项目(2021KJ031);嵌入式系统与服务计算教育部重点实验室(同济大学)开放基金资助项目(ESSCKF2021-06)。

Abstract: A reasonable encoding technique can greatly improve the accuracy of remaining time prediction.Therefore,five types of event encoding techniques were designed.All the events contained in the business process were extracted,and the event encoding techniques was used to encode the events.According to the sequential characteristics of business processes,different types of remaining time prediction models were constructed,and the event encoding vector was used as the input of the prediction model,so as to evaluate the impact of event encoding methods on the remaining time prediction.Experiments on eight public event logs demonstrated that the GloVe encoding technique achieved the best accuracy compared to other techniques in terms of process remaining time prediction.The obtained experiment results provided valuable insights and guidance to researchers and practitioners to choose the most appropriate event encoding technique to achieve the best remaining time prediction accuracy.

Key words: business process, remaining time prediction, deep learning, event encoding techniques

摘要: 合理的事件编码方式有助于提升业务流程剩余时间预测效果,为此,有针对性地设计出5种事件编码方式。首先,抽取业务流程包含的全部事件,并利用事件编码方式对获取的事件进行编码。其次,根据业务流程序列性的特点,构建不同类型的剩余时间预测模型,同时将事件编码向量作为预测模型的输入,从而评估事件编码方式对业务流程剩余时间预测的影响。在8个公开事件日志数据集上进行实验,结果表明GloVe事件编码方式在提高业务流程剩余时间预测效果上是最有效的。该实验结果可帮助研究者和从业者选择最合适的事件编码方式以实现最佳剩余时间预测效果。

关键词: 业务流程, 剩余时间预测, 深度学习, 事件编码方式

CLC Number: