Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (8): 2954-2961.DOI: 10.13196/j.cims.2023.BPM30

Previous Articles     Next Articles

Business process for radar reflectivity inversion based on geostationary meteorological satellites

LIN Huichao,JIN Zhengyong,XU Xiaolong+   

  1. School of Computer and Software,Nanjing University of Information Science and Technology
  • Online:2024-08-31 Published:2024-09-06
  • Supported by:
    Project supported by the Future Network Research Fund of Jiangsu Province,China(No.FNSRFP-2021-YB-18).

基于静止轨道卫星的雷达反射率反演业务过程研究

林慧超,金正勇,许小龙+   

  1. 南京信息工程大学计算机与软件学院
  • 作者简介:
    林慧超(1999-),男,浙江衢州人,硕士研究生,研究方向:遥感图像处理、大数据分析,E-mail:linhuichao1102@gmail.com;

    金正勇(1999-),男,安徽六安人,硕士研究生,研究方向:遥感图像处理、大数据分析;

    +许小龙(1988-),男,江苏海安人,教授,博士,研究方向:云计算、边缘计算、服务计算等,通讯作者,E-mail:xlxu@nuist.edu.cn。
  • 基金资助:
    江苏省未来网络研究基金资助项目(FNSRFP-2021-YB-18)。

Abstract: In China,there exists an imbalance and inadequacy in the distribution of meteorological radar,with particularly significant gaps in coverage in the southwestern region and over the sea.While geostationary meteorological satellites possess a broader range of observation and high temporal and spatial resolution multispectral observational results,utilizing satellite data for radar reflectivity inversion can to some degree compensate for deficiencies in radar networks.However,the current inversion process faces challenges in effectively extracting the complex,multichannel characteristics of satellite data in both the channel and spatial dimensions during data processing.In light of these issues,the business process of radar reflectivity inversion utilizing geostationary satellites was explored.The high-level semantic features of satellite data was extracted through ResNet,and then spatial and channel attention modules was utilized to aggregate features pertinent to radar echoes in both spatial and channel dimensions and eliminate interference features from non-precipitation clouds.Through a comparison experiment utilizing multiple indicators,the research in this paper had been verified to have a notable improvement in the precision of echo inversion across various sizes,highlighting the algorithm's superiority.

Key words: business process, radar echoes, remote sensing, deep learning, Hamawari-8

摘要: 我国气象雷达分布存在着不均衡,不充分问题,在西南地区以及海上区域存在着很大的雷达组网覆盖盲区。而静止轨道气象卫星具有更大的观测范围以及高时空分辨率的多光谱观测结果,通过开展基于卫星数据的雷达反射率反演业务过程可以在一定程度上能够弥补雷达组网空缺的问题。但现有的反演业务过程在数据处理阶段很难在通道以及空间维度上有效的提取复杂的多通道卫星数据特征。针对上述问题,探究了基于静止轨道卫星的雷达反射率反演业务过程,首先通过ResNet提取卫星数据的高层次语义特征,然后使用空间注意力模块、通道注意力模块在空间、通道两个维度上聚合与雷达回波相关的特征,并消除非降水云团的干扰特征。最后,通过多指标的对比实验验证了本文研究在不同大小的回波反演精度上均有一定提升。

关键词: 业务过程, 雷达回波, 遥感, 深度学习, 葵花8号卫星

CLC Number: