Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (11): 3999-4008.DOI: 10.13196/j.cims.2023.0087

Previous Articles     Next Articles

Process remaining time prediction approach supporting incremental logs

GUO Na1,LIU Cong2,3+,LI Caihong2,LIU Wenjuan2,GAO Qingxin2,ZENG Qingtian3   

  1. 1.School of Electrical and Electronic Engineering,Shandong University of Technology
    2.School of Computer Science and Technology,Shandong University of Technology
    3.College of Computer Science and Engineering,Shandong University of Science and Technology
  • Online:2024-11-30 Published:2024-11-28
  • Supported by:
    Project supported by the National Natural Science Foundation,China (No.62472264.52374221),the Taishan Scholars Program of Shandong Province,China(No.tsqn201909109,ts20190936),the Natural Science Foundation of Shandong Province,China(No.ZR2021YQ45,ZR2023MF015),and the Youth Innovation Science and Technology Team Foundation of Shandong Higher School,China(No.2021KJ031).

支持增量日志的业务流程剩余时间预测方法

郭娜1,刘聪2,3+,李彩虹2,刘文娟2,高庆鑫2,曾庆田3   

  1. 1.山东理工大学电气与电子工程学院
    2.山东理工大学计算机科学与技术学院
    3.山东科技大学计算机科学与工程学院
  • 作者简介:
    郭娜(1996-),女,山东淄博人,博士研究生,研究方向:流程挖掘、流程预测性监控等,E-mail:guona_7@163.com;

    +刘聪(1990-),男,山东淄博人,教授,博士,博士生导师,研究方向:流程挖掘、人工智能等,通讯作者,E-mail:liucongchina@163.com;

    李彩虹(1970-),女,山东招远人,教授,博士,博士生导师,研究方向:计算机应用技术、智能移动机器人控制技术、人工智能信息处理等,E-mail:lich@sdut.edu.cn;

    刘文娟(2000-),女,山东济宁人,硕士研究生,研究方向:流程挖掘、对象为中心的流程挖掘等,E-mail:liuwenjuansdut@163.com;

    高庆鑫(2000-),男,山东德州人,硕士研究生,研究方向:流程挖掘等,E-mail:gaoqingxin@163.com;

    曾庆田(1976-),男,山东高密人,教授,博士,博士生导师,研究方向:流程挖掘、业务流程管理、Petri网等,E-mail:qtzeng@163.com。
  • 基金资助:
    国家自然科学基金资助项目(62472264,52374221);山东省泰山学者工程专项基金资助项目(tsqn201909109,ts20190936);山东省自然科学基金优秀青年基金资助项目(ZR2021YQ45);山东省自然科学基金资助项目(ZR2023MF015);山东省高等学校青创科技计划创新团队资助项目(2021KJ031)。

Abstract: Process prediction monitoring can predict the subsequent steps and related attributes of business instance to prevent the risk in future and take timely interventions.As one of prediction tasks,process remaining time prediction can avoid the timeout risk.However,with growth over time and business scale,the business execution process will change accordingly.This requires that the prediction model can be continuously updated to capture these changes.In addition,enough input information is needed to distinguish the difference before and after the change,and the prediction model should have sufficient fitting and generalization ability.To tackle above challenges,we introduce a framework to support incremental logs for remaining time prediction.Specifically,we first proposed a feature self-selection strategy to provide enough input information,based on selected features constructed the multi-feature prediction model to improve the fitting ability.On that basis,taking the time cycle and the case number as judgment standard of the model update,we present three incremental update mechanism including regular updates,quantitative updates,and comprehensive updates.Based on six real event logs,the incremental update mechanism is simulated on implemented three prediction models.The experimental results verify the effectiveness of the proposed approach and improve the accuracy of the process remaining time prediction.

Key words: process prediction monitoring, remaining time, incremental update, feature selection, multi-feature prediction

摘要: 流程预测性监控通过对业务流程及其属性的预测,预防运行中的实例未来可能会面临的风险,从而及时干预流程。流程剩余时间预测是避免业务超时风险的一项预测任务,然而业务执行是动态的过程,可能会随时间或业务规模的增长而发生变化。这就要求预测模型能够持续更新以捕捉这些变化,同时要有足够的输入信息来区分变化前后的差异,并且预测模型应具有充分的拟合与泛化能力。针对上述问题,本文提出支持增量日志的流程剩余时间预测框架。具体而言,提出特征自选取策略,构建多特征预测模型,丰富预测任务的已知信息,将所得特征组合作为模型输入,提高预测模型的拟合能力。然后,将定期和定量作为模型更新的判断依据,提出定期更新、定量更新和综合更新3种增量更新机制。最后,基于6个真实事件日志,实现了3种不同的预测模型,模拟了增量更新过程。实验结果验证了本文所提方法的有效性,提高了流程剩余时间预测的准确率。

关键词: 预测性监控, 剩余时间, 增量更新, 特征选择, 多特征预测

CLC Number: