Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (12): 4484-4492.DOI: 10.13196/j.cims.2023.0163

Previous Articles     Next Articles

Fault feature selection method of rolling bearings based on multiple metric weighting

JIAO Rui1,LI Sai1+,DING Zhixia1,FAN Yajun2   

  1. 1.School of Electrical and Information Engineering,Wuhan Institute of Technology
    2.School of Mechanical Science and Engineering,Huazhong University of Science and Technology
  • Online:2024-12-31 Published:2025-01-08
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.62176189),and the Science-Technology Project of Hubei Provincial Department of Education,China(No.Q20201509).

基于多指标加权的滚动轴承故障特征选择方法

焦睿1,李赛1+,丁芝侠1,范亚军2   

  1. 1.武汉工程大学电气信息学院
    2.华中科技大学机械科学与工程学院
  • 作者简介:
    焦睿(1998-),女,湖北武汉人,硕士研究生,研究方向:滚动轴承故障诊断,E-mail:jrui1998@163.com;

    +李赛(1989-),男,湖北仙桃人,讲师,博士,硕士生导师,研究方向:机器学习、状态估计、故障预测与健康管理,通讯作者,E-mail:sli@wit.edu.cn;

    丁芝侠(1989-),女,河南信阳人,特聘教授,硕士生导师,研究方向:分数阶神经网络动力学分析与应用、忆阻神经形态系统,E-mail:zxding89@163.com;

    范亚军(1989-),男,湖北宜昌人,博士,博士后,研究方向:数据驱动智能建模,E-mail:yajunfan@hust.edu.cn。
  • 基金资助:
    国家自然科学基金资助项目(62176189);湖北省教育厅科学技术研究资助项目(Q20201509)。

Abstract: To better screen the fault features of the original high-dimensional vibration signals and improve the accuracy of rolling bearings fault diagnosis,a fault feature selection method based on weighted optimization of feature evaluation metrics was proposed.The smoothness priors approach was adaptively used to decompose the non-stationary vibration signals,and the various time-domain,frequency-domain and time-frequency domain features were extracted to construct an initial fault feature set.Then,four feature performance evaluation indexes of monotonicity,discrimination,identification and robustness were integrated,and a weighted linear combination based on the sine-cosine optimization algorithm was used to comprehensively evaluate the fault features performance,followed by the screening of sensitive fault features.The proposed method was applied to rolling bearings experimental data,and the support vector classifier was used as the diagnostic machine to verify the effectiveness of the proposed fault feature selection method.

Key words: rolling bearings, fault diagnosis, fault feature selection, fault feature evaluation

摘要: 为了更好地筛选原始高维振动信号的故障特征,提高滚动轴承故障诊断精度,提出一种特征评价指标加权优化的故障特征选择方法。首先采用平滑先验法自适应地分解轴承非平稳振动信号,并提取多种时域、频域和时频域特征构建初始故障特征集。然后,将单调性、区别性、识别性和鲁棒性4个特征性能评价指标融合,采用基于正余弦算法优化的加权线性组合综合评估故障特征性能,继而筛选出敏感故障特征。最后,将该方法应用于滚动轴承实验数据,采用支持向量分类机作为诊断器,验证所提出故障特征选择方法的有效性。

关键词: 滚动轴承, 故障诊断, 故障特征选择, 故障特征评价

CLC Number: