Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (5): 1721-1734.DOI: 10.13196/j.cims.2024.BPM04

Previous Articles     Next Articles

Object-centric process model discovery and correctness verification approach

LIU Wenjuan1,LIU Cong1,2+,ZHANG Zaigui3,LI Caihong1,CHENG Long4,ZENG Qingtian2   

  1. 1.School of Computer Science and Technology,Shandong University of Technology
    2.College of Computer Science and Engineering,Shandong University of Science and Technology
    3.Jinan Inspur (Jinan Data) Technology Co.,Ltd.
    4.School of Control and Computer Engineering,North China Electric Power University
  • Online:2025-05-31 Published:2025-06-06
  • Supported by:
    Project supported by the National Key R&D Program,China(No.2022ZD0119501),the National Natural Science Foundation,China(No.62472264,52374221),the Taishan Scholars Program of Shandong Province,China(No.ts20190936,tsqn201909109),the Natural Science Excellent Youth Foundation of Shandong Province,China(No.ZR2021YQ45),the Youth Innovation Science and Technology Team Foundation of Shandong Higher School,China(No.2021KJ031),and the Natural Science Foundation of Shandong Province,China(No.ZR2022MF319).

对象为中心流程模型挖掘与正确性验证方法

刘文娟1,刘聪1,2+,张在贵3,李彩虹1,程龙4,曾庆田2   

  1. 1.山东理工大学计算机科学与技术学院
    2.山东科技大学计算机科学与工程学院
    3.济南浪潮数据技术有限公司
    4.华北电力大学控制与计算机工程学院
  • 作者简介:
    刘文娟(2000-),女,山东济宁人,硕士研究生,研究方向:流程挖掘等,E-mail:liuwenjuansdut@163.com;

    +刘聪(1990-),男,山东淄博人,教授,博士,博士生导师,研究方向:业务流程管理、流程挖掘、人工智能等,通讯作者,E-mail:liucongchina@163.com;

    张在贵(1983-),男,山东济南人,高级工程师,硕士,研究方向:分布式存储技术、数据挖掘,E-mail:zhangzg@inspur.com;

    李彩虹(1970-),女,山东招远人,教授,博士,博士生导师,研究方向:计算机应用技术、智能移动机器人控制技术、人工智能信息处理,E-mail:lich@sdut.edu.cn;

    程龙(1985-),男,湖北仙桃人,教授,博士,研究方向:并行和分布式计算、大数据和流程挖掘等,E-mail:lcheng@ncepu.edu.cn;

    曾庆田(1976-),男,山东高密人,教授,博士,博士生导师,研究方向:流程挖掘、业务流程管理、Petri网等,E-mail:qtzeng@163.com。
  • 基金资助:
    国家重点研发计划资助项目(2022ZD0119501);国家自然科学基金面上资助项目(62472264,52374221);山东省泰山学者工程专项基金资助项目(ts20190936,tsqn201909109);山东省自然科学基金优秀青年基金资助项目(ZR2021YQ45);山东省高等学校青创科技计划创新团队资助项目(2021KJ031);山东省自然科学基金面上资助项目(ZR2022MF319)。

Abstract: Process mining aims to restore business process models from event logs to provide technical support for understanding,improving and optimizing business processes.Traditional process mining techniques focus on a single business object,which cannot reflect the complex association relationships such as one-to-many and many-to-many in real-life businesses.Therefore,the complex association relationship in the original data will be flattened,resulting in the lack of collaboration and interaction between multiple objects in the mining results.To solve the above problems,an object-centric process model discovery technique was proposed to support discovery of multi-object Petri net process models from the object-centric event logs.Furthermore,aiming at the correctness of multi-object Petri net model,a correctness verification method based on extended multi-object Petri net reachability analysis was proposed.Finally,the correctness and effectiveness of the proposed method were verified by comparing the application cases with the traditional process mining techniques.Process mining aims to restore business process models from event logs to provide technical support for understanding,improving and optimizing business processes.Traditional process mining techniques focus on a single business object,which cannot reflect the complex association relationships such as one-to-many and many-to-many in real-life businesses.Therefore,the complex association relationship in the original data will be flattened,resulting in the lack of collaboration and interaction between multiple objects in the mining results.To solve the above problems,an object-centric process model discovery technique was proposed to support discovery of multi-object Petri net process models from the object-centric event logs.Furthermore,aiming at the correctness of multi-object Petri net model,a correctness verification method based on extended multi-object Petri net reachability analysis was proposed.Finally,the correctness and effectiveness of the proposed method were verified by comparing the application cases with the traditional process mining techniques.

Key words: object-centric process mining, model discovery, multi-object Petri net, correctness verification

摘要: 流程挖掘旨在从企业信息系统的事件日志中还原业务流程模型,为理解、改进和优化业务流程提供技术支持。传统流程挖掘技术面向单一对象,无法体现实际流程对象中存在的一对多和多对多等复杂关联关系,若将传统流程挖掘技术直接应用到多对象业务流程中,需要将原始数据中的复杂关联关系扁平化,导致挖掘结果中多对象间的协同与交互关系缺失。针对以上问题,首先提出一种对象为中心流程模型挖掘方法,可以从对象为中心事件日志中挖掘多对象Petri网流程模型,来精准描述多对象复杂交互业务行为。进而,针对多对象Petri网模型的正确性验证问题,提出了基于扩展多对象Petri网可达性分析的正确性验证方法。最后,通过应用案例与传统流程挖掘方法比较验证了所提方法的正确性和有效性。

关键词: 对象为中心流程挖掘, 模型挖掘, 多对象Petri网, 正确性验证

CLC Number: