Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (5): 1735-1746.DOI: 10.13196/j.cims.2024.BPM14

Previous Articles     Next Articles

Pretraining-based approach for predicting remaining execution time of concurrent business process instances

NI Weijian1,JIANG Long1,ZENG Qingtian1+,LIU Tong1,XU Xingzong2   

  1. 1.College of Computer Science and Engineering,Shandong University of Science and Technology
    2.Shanghai Tiantian Fund Distribution
  • Online:2025-05-31 Published:2025-06-06
  • Supported by:
    Project supported by the Natural Science Foundation of Shandong Province,China(No.ZR2022MF319,ZR2023MF097),the National Natural Science Foundation,China(No.52374221),the Taishan Scholars Program of Shandong Province,China(No.TS20190936),and the Humanities and Social Science Fund of Ministry of Education,China(No.23YJAZH192).

基于预训练的并发业务过程实例剩余执行时间预测方法

倪维健1,姜隆1,曾庆田1+,刘彤1,徐兴宗2   

  1. 1.山东科技大学计算机科学与工程学院
    2.上海天天基金销售有限公司
  • 作者简介:
    倪维健(1981-),男,山东临沂人,教授,博士,研究方向:过程挖掘、机器学习,E-mail:niweijian@sdust.edu.cn;

    姜隆(1998-),男,山东青岛人,硕士研究生,研究方向:过程挖掘、机器学习,E-mail:j.long@foxmail.com;

    +曾庆田(1976-),男,山东高密人,教授,博士,研究方向:业务过程管理、过程挖掘、Petri 网理论与应用,通讯作者,E-mail:qtzeng@163.com;

    刘彤(1982-),女,江西宜春人,副教授,博士,研究方向:文本挖掘、机器学习,E-mail:liu_tongtong@foxmail.com;

    徐兴宗(1996-),男,山东泰安人,硕士,研究方向:过程挖掘、机器学习,E-mail:201501061232@sdust.edu.cn。
  • 基金资助:
    山东省自然科学基金面上资助项目(ZR2022MF319,ZR2023MF097);国家自然科学基金资助项目(52374221);山东省泰山学者特聘专家资助项目(TS20190936);教育部人文社会科学研究规划基金资助项目(23YJAZH192)。

Abstract: Most existing deep learning-based methods for predicting the remaining time of business processes are mostly designed for a single execution instance,unable to perceive the influence of other concurrent instances in aspects such as resource competition.Additionally,there is a lack of in-depth exploration of instance embedding representation,resulting in considerable room for improvement in remaining time prediction.To address these deficiencies,a remaining time prediction method based on Bag-Attention for concurrent multi-instances was proposed,and a self-supervised learning-based instance embedding representation method was introduced to enhance the quality of instance representation.A method for constructing a concurrent instance dataset was presented,and event attributes were added based on event activities,enriching the input information for subsequent models;then,instance attribute embeddings were obtained through pre-training;finally,process instance attributes were encoded in the form of multi-channel convolution,and concurrent instances were integrated through the attention mechanism.Experimental results showed that the proposed method had effectively improved the accuracy of remaining time prediction compared to traditional methods.

Key words: business process management, prediction of remaining time, concurrent multiple instances, deep learning

摘要: 现有的基于深度学习的业务流程剩余时间预测方法大多针对单一执行实例构建预测模型,无法感知到同时执行的其他并发实例在资源竞争等方面的影响,并且对于实例嵌入表示缺少深入探究,导致现有方法的预测效果还有较大提升空间。针对现有方法的不足,提出了基于包注意力的并发多实例剩余时间预测方法,并引入了基于自监督学习的实例嵌入表示方法以提升实例表示的质量。首先,给出了并发实例数据集的构建方法,并在事件活动的基础上添加事件属性,丰富了后续模型的信息输入;之后,通过预训练的方式得到实例属性嵌入表示;最后,将流程实例属性以多通道卷积的形式进行编码,并通过注意力机制对并发实例进行融合。实验结果表明,所提方法与传统方法相比,有效提升了剩余时间预测的准确性。

关键词: 业务流程管理, 剩余执行时间预测, 并发多实例, 深度学习

CLC Number: