Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (11): 4191-4210.DOI: 10.13196/j.cims.2024.0457

Previous Articles     Next Articles

Intelligent fault diagnosis of aero-engine bearings through multi-source data fusion

LIU Han1,LIU Qinming1,2+,YE Chunming1,WANG Yujie1   

  1. 1.Business School,University of Shanghai for Science and Technology
    2.School of Smart Emergency Management,University of Shanghai for Science and Technology
  • Online:2025-11-30 Published:2025-12-08
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.71632008,71840003),the Baoshan Transformation and Development Technology Special Project of Shanghai's 2021 Science and Technology Innovation Action Plan,China(No.21SQBS01404),and the Shanghai University of Technology Science and Technology Development Foundation,China(No.2020KJFZ038).

多源数据融合的航空发动机轴承智能故障诊断

刘涵1,刘勤明1,2+,叶春明1,汪宇杰1   

  1. 1.上海理工大学管理学院
    2.上海理工大学智慧应急管理学院
  • 作者简介:
    刘涵(2002-),男,湖南邵阳人,硕士研究生,研究方向:故障诊断、维护调度,E-mail:1990073298@qq.com;

    +刘勤明(1984-),男,山东日照人,教授,博士,博士生导师,研究方向:维护调度、人工智能等,通讯作者,E-mail:lqm0531@163.com;

    叶春明(1964-),男,安徽宣城人,教授,博士,博士生导师,研究方向:生产调度,E-mail:yechm6464@163.com;

    汪宇杰(2003-),男,上海人,本科生,研究方向:故障诊断,E-mail:13585657868@163.com。
  • 基金资助:
    国家自然科学基金资助项目(71632008,71840003);上海市2021度“科技创新行动计划”宝山转型发展科技专项资助项目(21SQBS01404);上海理工大学科技发展资助项目(2020KJFZ038)。

Abstract: To address the demand for fault diagnosis of aero-engine bearings under extremely complex working conditions,a novel high-precision intelligent fault diagnosis method for aero-engine bearings was proposed.Initially,a dual-channel pseudo-siamese neural network was constructed,incorporating a one-dimensional adaptive batch normalization convolutional neural network module and a one-dimensional physics-guided convolutional neural network module,which could address integration of multi-source sensor data effectively,extract the key features and achieve the efficient fusion of diverse data sources.Subsequently,the gated recurrent unit optimized by nutcracker optimization algorithm was used to recognize fault state,enhancing the model's adaptability,robustness and generalization capability,especially under complex working conditions and noisy environments.Finally,the model's effectiveness was validated through case analysis,demonstrating fault diagnosis accuracy rates of 99.99%,100% and 100% respectively,with a maximum improvement of 23.97% in recognition accuracy compared to existing diagnostic methods,highlighting clear performance advantages.Additionally,generalization and noise resistance tests were conducted,and the results revealed superior noise robustness and strong generalization performance.

Key words: multi-source sensor data, fault diagnosis, pseudo-siamese neural network, nutcracker optimization algorithm, gated recurrent unit

摘要: 为应对航空发动机轴承在极端复杂工况下的故障诊断需求,提出了一种新的航空发动机轴承高精度智能故障诊断方法。首先,构建了具有一维自适应归一化卷积神经网络模块和一维物理特性指导的卷积神经网络模块的双通道伪孪生神经网络,有效应对多源传感器数据的融合问题,提取关键特征并实现多源数据的高效融合。其次,采用星雀优化算法优化门控循环单元模块进行故障状态识别,提高了模型的自适应性、鲁棒性及泛化能力,特别是在复杂工况和噪声环境下。最后,通过算例验证模型的有效性,提出方法的故障诊断准确率分别达到99.99%、100%和100%,与现有几种诊断方法对比,所提方法的识别准确率最高提高了23.97%,展现出明显的性能优势。此外,进行了泛化能力验证实验与噪声对抗实验,结果表明了其优越的抗噪声能力和强大的泛化性能。

关键词: 多源传感器数据, 故障诊断, 伪孪生神经网络, 星雀优化算法, 门控循环单元

CLC Number: