Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (8): 2962-2967.DOI: 10.13196/j.cims.2023.BPM27

Previous Articles     Next Articles

Radar echo extrapolation business process model based on ConvLSTM

WANG Youning1,BAI Jinming2,LIU Qi1+   

  1. 1.Engineering Research Center of Digital Forensics,Ministry of Education,School of Computer and Software,Nanjing University of Information Science and Technology
    2.School of Applied Meteorology,Nanjing University of Information Science and Technology
  • Online:2024-08-31 Published:2024-09-06
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.62002276,41911530242,41975142,42275157),the Major Program of the National Social Science Foundation,China(No.17ZDA092),the Joint International Projects Funding Scheme of Royal Society of Edinburgh and China Natural Science Foundation Council,and the Basic Research Programs of Jiangsu Province,China(No.BK20191398).

基于RC-LSTM的雷达回波外推方法

王友宁1,白金明2,刘琦1+   

  1. 1.南京信息工程大学计算机与软件学院教育部数字取证工程研究中心
    2.南京信息工程大学应用气象学院
  • 作者简介:
    王友宁(1998-),男,江西瑞昌人,硕士研究生,研究方向:天气雷达回波外推,E-mail:20211221039@nuist.edu.cn;

    白金明(2002-),男,河南郑州人,本科生,研究方向:天气雷达回波外推,E-mail:202013020041@nuist.edu.cn;

    +刘琦(1979-),男,河南郑州人,教授,博士,博士生导师,研究方向:气象灾害监测预警、边缘计算、FES过程评估、用电侧负荷分析,通讯作者,E-mail:qi.liu@nuist.edu.cn。
  • 基金资助:
    国家自然科学基金资助项目(62002276,41911530242,41975142,42275157);国家社科基金重大项目(17ZDA092);英国爱丁堡皇家学会和中国自然科学基金委员会联合国际项目资助计划资助项目;江苏省基础研究计划资助项目(BK20191398)。

Abstract: Radar echo extrapolation is an important tool for short-term precipitation forecasting.The methods used are categorized into numerical and data-driven forecasts.The former relies on mathematical and physical models,while the latter relies on deep learning techniques to summarize historical patterns.Despite the active research in deep learning of short-term precipitation forecasting,practical applications still face challenges,especially the accuracy problem.Therefore,a radar echo extrapolation system was designed by applying the proposed  Residual Convolutional Long Short Term Memory(RC-LSTM)model.Residual connections to each layer of stacked ConvLSTM cells had been added while using planning sampling,which made the model deeper while retaining the learning capability of the original small model,ensuring that the network minimizes the loss of historical information in the spatial dimension,thus improving the accuracy of long-time radar echo extrapolation.

Key words: meteorological business, precipitation now casting, residual convolutional long short term memory, radar echo extrapolation

摘要: 雷达回波外推是降水临近预报的重要手段,所用的方法分为数值预报与数据驱动预报。前者依托数学与物理模型,后者依托深度学习技术总结历史规律。尽管深度学习在气象预报中研究活跃,但实际应用仍面临挑战,尤其是精度问题。因此设计了一种雷达回波外推系统,应用所提出的残参卷积长短期记忆(RC-LSTM)模型,在使用规划采样的同时,为每一层堆叠的ConvLSTM单元添加了残差连接,使得模型在更深的同时保留原有小模型的学习能力,保证网络最大限度降低空间维度的历史信息损耗,从而提高长时效雷达回波外推的精度。

关键词: 气象业务, 降水临近预报, 残参卷积长短期记忆, 雷达回波外推

CLC Number: