Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (12): 4292-4301.DOI: 10.13196/j.cims.2023.0528

Previous Articles     Next Articles

Time optimal trajectory planning of robotic arm based on improved tuna swarm algorithm

WU Jichun1,ZHANG Zhaiwu1,YANG Yongda1,ZHANG Ping1,FAN Dapeng2   

  1. 1.School of Mechanical Engineering and Mechanics,Xiangtan University
    2.Engineering Intelligent Academy of Sciences,National University of Defense Technology
  • Online:2024-12-31 Published:2025-01-06
  • Supported by:
    Project supported by the Regional(Hunan) Innovation and Development Joint Fund of National Natural Science  Foundation,China(No.U19A2072).

基于改进金枪鱼群算法的机械臂时间最优轨迹规划

吴继春1,张斋武1,杨永达1,张平1,范大鹏2   

  1. 1.湘潭大学机械工程与力学学院
    2.国防科技大学智能科学学院
  • 作者简介:
    吴继春(1979-),男,湖南攸县人,教授,博士,博士生导师,研究方向:CNC与工业机器人运动控制、PLCopen运动控制、机器视觉研究与应用,E-mail:wujichun@xtu.edu.cn;

    张斋武(1999-),男,湖南益阳人,硕士研究生,研究方向:机器人运动控制,E-mail:202121542059@smail.xtu.edu.cn;

    杨永达(1999-),男,湖南长沙人,硕士研究生,研究方向:机器视觉,E-mail:202121542048@smail.xtu.edu.cn;

    张平(1998-),男,吉林榆树人,硕士研究生,研究方向:PLCopen运动控制,E-mail:202121542056@smail.xtu.edu.cn;

    范大鹏(1964-),男,湖南长沙人,教授,博士,博士生导师,研究方向:超精密测量、机床运动误差分析、运动控制、特种装备等,E-mail:fdp@nudt.edu.cn。
  • 基金资助:
    国家自然科学基金区域(湖南)创新发展联合基金资助项目(U19A2072)。

Abstract: To enable the robotic arm to complete tasks quickly while satisfying kinematic constraints during its movement,an optimal time trajectory planning method for robotic arm based on improved Tuna Swarm Optimization(TSO) algorithm was proposed,which was optimized on the standard TSO algorithm and improved by employing the tent chaotic population initialization and Levy flight.An adaptive threshold was introduced to improve the performance of the algorithm.A mathematical model for time optimization objectives was established by taking 6-degree-of-freedom serial manipulator as the research subject,and a 3-5-3 blended polynomial interpolation function was employed as the foundation for trajectory planning.Experimental results showed that the improved TSO algorithm had higher optimization accuracy and a more robust ability to escape local optimal solutions than the original algorithms.The optimized robotic arm′s displacement,velocity and acceleration curves were smooth and free from abrupt changes,which indicated that the improved TSO algorithm could effectively achieve optimal time trajectory planning for the robotic arm.

Key words: improved tuna swarm optimization algorithm, chaotic population initialization, Levy flight, adaptive threshold, trajectory planning

摘要: 针对机械臂在满足运动学约束的前提下,以最短的时间完成工作任务的问题,提出一种基于改进金枪鱼群算法的机械臂最优时间轨迹规划。在标准的金枪鱼群算法(TSO)上对其进行优化,采用tent混沌种群初始化和莱维飞行等方法进行改进,并引入自适应阈值来提高算法的性能。该方法以6自由度串联机械臂为研究对象,建立时间优化目标数学模型,以3-5-3混合多项式插值函数为基础对其进行轨迹规划。实验结果表明,改进的金枪鱼群算法相比原始算法具有更高的寻优精度和更强的跳出局部最优解能力,其优化后得到的机械臂的位移、速度、加速度曲线平滑,无突变,从而表明改进的金枪鱼群算法能有效地实现机械臂时间最优轨迹规划。

关键词: 改进金枪鱼群算法, 混沌种群初始化, 莱维飞行, 自适应阈值, 轨迹规划

CLC Number: