Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (11): 4009-4020.DOI: 10.13196/j.cims.2022.0287

Previous Articles     Next Articles

Computation offloading strategy for balanced-resource allocation in the multi-user mobile edge computing environment

LU Min1,SONG Yijie1,2,3,YANG Xiaohui3,YANG Zhongming1,2,HUANG Chunlan1,2,YUE Guangxue1,2+   

  1. 1.Department of Mathematics,Jiangxi University of Science and Technology
    2.Department of Information Science and Engineering,Jiaxing University
    3.School of Computer Engineering and Science,Shanghai University
  • Online:2024-11-30 Published:2024-11-28
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.U19B2015,11704163),the Kunpeng Plan of Zhejiang Province,China,and the  Innovation Foundation for Postgraduate of Jiangsu Province in 2021,China(No.YC2021-S600).

面向多用户资源均衡分配的MEC计算卸载策略

卢敏1,宋逸杰1,2,3,杨晓慧3,杨忠明1,2,黄淳岚1,2,乐光学1,2+   

  1. 1.江西理工大学理学院
    2.嘉兴大学信息科学与工程学院
    3.上海大学计算机工程与科学学院
  • 作者简介:
    卢敏(1964-),男,江西于都人,教授,硕士,硕士生导师,研究方向:网络与通信、深度学习,E-mail:lumin641122@126.com;

    宋逸杰(1997-),男,安徽黄山人,博士研究生,研究方向:移动云计算、智能算法、图论算法;

    杨晓慧(1996-),女,山西运城人,博士研究生,研究方向:计算迁移与协同服务;

    杨忠明(1998-),男,贵州贵阳人,硕士研究生,研究方向:移动云计算;

    黄淳岚(1997-),女,浙江桐乡人,硕士研究生,研究方向:移动云计算;

    +乐光学(1963-),男,贵州天柱人,教授,博士,研究方向:多云融合和协同服务、无线Mesh网络与移动云计算,通讯作者,E-mail:gxyue@zixu.edu.cn。
  • 基金资助:
    国家自然科学基金重点资助项目(U19B2015);国家自然科学基金资助项目(11704163);浙江省“鲲鹏行动”计划资助项目;2021年江西省研究生创新专项资金资助项目(YC2021-S600)。

Abstract: Due to edge server equipped with the limited resource,such as energy,computing power,capacity and so on,the mobile edge computing is difficult to be deployed in resource-constrained areas.To ensure the quality of service,a Two-Stage Computing Offloading Strategy (TSCOS) combining with task clustering and resource allocation was proposed.Joint optimization offloading algorithm was designed by taking offloading decision and resource allocation as constraints to reduce delay and improve resource utilization rate.Through pre-matching the offloaded tasks with the candidate servers,a grouping model based on task preference was designed to improve the accuracy and matching time during offloading phase.Then,an improved Gale Shapley method was used to realize the load balance of edge network by quickly calculating the optimal solution set of many-to-many game matches.Compared with distance grouping model,the task preference grouping model could improve the utilization of computing resources.To evaluate the performance of the proposed mechanism,the TSCOS was compared with random walk strategy,greedy strategy and dynamic resource scheduling strategy(FFS+IPFS).The result showed that the edge server load balancing variance reduced by 2~4 times,and the task completion success rate was improved 5%~15%.Under the same energy consumption,the energy-efficient was improved 5%~10%.Moreover,the average acceptance rate of offloading tasks and the average success rate were 92 % and 96 % respectively.

Key words: edge computing, offloading decision, game matching, resource allocation, load balancing

摘要: 移动边缘计算在资源受限地区的物联网部署上面临能源、算力、容量等资源限制的挑战,为保障网络QoS,提出一种任务分组和资源分配联合优化的两阶段计算卸载策略(TSCOS)。以卸载决策和资源分配为约束,设计联合优化卸载算法来降低时延、提高资源利用率。第一阶段基于任务偏好的待卸载计算任务分组模型,与候选服务器进行预匹配,提高计算卸载的精准度以降低匹配时间开销;第二阶段运用Gale Shapley算法快速计算多对多博弈最优匹配解集,实现边缘网络负载均衡。与距离分组模型相比,任务偏好的分组模型可以提高卸载精准度以及计算资源的利用率。将TSCOS策略与随机游走策略(RS)、贪心策略(GE)以及动态资源调度策略(FFS+IPFS)对比,实验结果表明,TSCOS在服务器负载均衡方面相比,方差缩小达到2~4倍,任务成功率提高5%~15%;在相同的能耗下,能效比提高5%~10%。任务平均接收率和卸载任务处理成功率达92%和96%。

关键词: 边缘计算, 卸载决策, 博弈匹配, 资源分配, 负载均衡

CLC Number: