Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (9): 3265-3276.DOI: 10.13196/j.cims.2023.0279

Previous Articles     Next Articles

Iterative closest point registration method based on point cloud overlap ratio

YAN Chenxi1,CHEN Chengjun1+,WANG Jinlei1,DONG Haitao2   

  1. 1.School of Mechanical and Automotive Engineering,Qingdao University of Technology
    2.School of Information and Control Engineering,Qingdao University of Technology
  • Online:2025-09-30 Published:2025-10-14
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.52175471).

基于点云重叠率的最近点迭代配准方法

闫晨曦1,陈成军1+,王金磊1,董海韬2   

  1. 1.青岛理工大学机械与汽车工程学院
    2.青岛理工大学信息与控制工程学院
  • 作者简介:
    闫晨曦(1996-),女,山西运城人,硕士研究生,研究方向:点云、图像处理、机器学习,E-mail:2083209651@126.com;

    +陈成军(1979-),男,山东临沂人,教授,博士,博士生导师,研究方向:深度学习、机器人可视化遥操作及自主控制、AR装配诱导,通讯作者,E-mail:chencj@qut.edu.cn;

    王金磊(1995-),男,山东潍坊人,博士研究生,研究方向:机器学习、计算机视觉、装配过程监测,E-mail:1240560654@qq.com;

    董海韬(1988-),男,黑龙江大庆人,讲师,博士,研究方向:机器学习、计算机视觉,E-mail:donght@qut.edu.cn。
  • 基金资助:
    国家自然科学基金资助项目(52175471)。

Abstract: To quickly detect the inconsistent areas between the denture machining model and the design model and guide the workers to quickly complete the denture correction,an Iterative Closest Point registration method based on the overlap rate of point clouds was proposed and a heat map was used to indicate the inconsistent areas of the denture machining model.Based on Iterative Closest Point(ICP) arithmetic,a bidirectional KD-tree was used to search the nearest points,a tolerance range was introduced to define the overlap points,and the overlap rate was used as the convergence condition for alignment instead of the mean square error.The results showed that the proposed method solved the problem of aligning the denture machining model with the design model and could quickly detect the discrepancy regions of the denture machining model for different types of prostheses.The overlap rate and registration efficiency were improved compared with the traditional ICP.

Key words: point cloud registration, iterative closest point, point clouds overlap, bidirectional KD-tree

摘要: 为了快速检测义齿加工模型与设计模型的不一致区域,以指导工人快速完成义齿修正,提出了一种基于点云重叠率的最近点迭代配准方法,并采用热力图的形式显示义齿加工模型不一致区域。在最近点迭代(ICP)算法基础上,使用双向KD-tree搜索近邻点,引入容差范围定义重合点,以重叠率代替均方误差作为收敛条件,进行配准。结果表明,所提方法解决了义齿加工模型与设计模型的配准问题,能够针对不同类型的义齿快速检测出义齿加工模型的差异区域,相比传统ICP,配准重叠率和效率均有提升。

关键词: 点云配准, 最近点迭代, 点云重叠, 双向KD-tree

CLC Number: