Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (12): 4233-4245.DOI: 10.13196/j.cims.2023.0301

Previous Articles     Next Articles

Position and pose recognition of aviation blades based on 3D point cloud boundary point features

HAN Fenglin1,2+,LI Weijian1,2,SU Bin1,2,PENG Hang1,2,LI Qixin1,2   

  1. 1.College of Mechanical and Electrical Engineering,Central South University
    2.State Key Laboratory of Precision Manufacturing for Extreme Service Performance,Central South University
  • Online:2024-12-31 Published:2025-01-06
  • Supported by:
    Project supported by the National Major Scientific Research Instrument Development Foundation,China(No.52227806),and the Hunan Provincial Science and Technology Innovation Plan,China(No.2022GK4027).

基于3D点云边界点特征的航空叶片位姿识别

韩奉林1,2+,李炜健1,2,苏斌1,2,彭沆1,2,李其鑫1,2   

  1. 1.中南大学机电工程学院
    2.中南大学极端服役性能精准制造全国重点实验室
  • 作者简介:
    +韩奉林(1983-),男,河北邯郸人,副教授,博士,硕士生导师,研究方向:智能制造、机器人技术等,通讯作者,E-mail:hanfl@csu.edu.cn;

    李炜健(1998-),男,江西南昌人,硕士研究生,研究方向:智能制造,E-mail:452795753@qq.com;

    苏斌(1998-),男,湖南邵阳人,硕士研究生,研究方向:智能制造,E-mail:1786817045@qq.com;

    彭沆(2000-),男,湖北天门人,硕士研究生,研究方向:智能制造,E-mail:183640144@qq.com;

    李其鑫(1998-),男,四川宜宾人,硕士研究生,研究方向:智能制造,E-mail:1259903929@qq.com。
  • 基金资助:
    国家重大科研仪器研制资助项目(52227806);湖南省科技创新计划资助项目(2022GK4027)。

Abstract: Aiming at the problem of high positioning cost,low efficiency and difficult to guarantee accuracy in the processing of aircraft blades,a 3D point cloud boundary point feature registration algorithm was proposed to identify the position and pose of aviation blades,which could quickly and accurately locate the specific position of aircraft blades in space through a single scan.The point cloud data of the workpiece was obtained by the structured light camera and preprocessed.Then,the boundary points of the point cloud were extracted as the key points for registration based on the projection vector angle of neighboring points on the cutting plane.The Fast Point Feature Histogram(FPFH) descriptor of the key points was calculated,and the rough registration matrix was solved by using the Sample Consensus Initial Alignment(SAC-IA) algorithm.The point-to-plane Iterative Closest Point(ICP) algorithm was used for accurate registration.Robot vision localization experiments were carried out to verify the method,and the results showed that the algorithm significantly improved the registration accuracy for aircraft blades with a mean square error of 0.6540mm2.The recognition error for the position of aircraft blades in space was within 1mm,which met the requirements of positioning.

Key words: aircraft blades, machining positioning, point cloud registration, feature of boundary

摘要: 针对航空叶片在加工过程中定位成本高、效率低且精度难以保证的问题,提出一种基于3D点云边界点特征配准算法的航空叶片位姿识别方法,通过一次扫描即可快速、精确定位航空叶片在空间中的具体位置。首先,通过结构光相机获取工件的点云数据并对其进行预处理;随后,根据邻域点在切平面的投影向量夹角提取点云边界点作为配准的关键点;计算关键点的快速点特征直方图(FPFH)描述子,采用采样一致性初始配准(SAC-IA)算法求解粗配准矩阵;然后使用点到面的最近点迭代(ICP)算法进行精配准。最后,进行机器人视觉定位实验验证,结果表明针对航空叶片,所提算法显著提高了配准精度,均方误差为0.654 0 mm2;对于航空叶片在空间中位置的识别误差在1 mm以内,能够满足定位需求。

关键词: 航空叶片, 加工定位, 点云配准, 边界特征

CLC Number: