Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (12): 4493-4507.DOI: 10.13196/j.cims.2023.0598

Previous Articles     Next Articles

Remaining useful life prediction of relative density high-dimensional kernel estimation for systems based on multi-sensor data fusion

WEI Shaomeng,ZHANG Jiangmin,SHI Hui+,WU Bin   

  1. School of Electronic and Information Engineering,Taiyuan University of Science & Technology
  • Online:2024-12-31 Published:2025-01-08
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.72071183),the Key R&D Program of Shanxi Province,China(No.202202100401002,202202090301011,202202150401005),the Natural Science Foundation of Shanxi Province,China(No.20210302123206,202203021211205),the Shanxi Provincial Scholarship Council,China(No.2021-135),and the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province,China(No.20220029).

融合多传感器数据的系统相对密度高维核估计剩余寿命预测

卫少萌,张江民,石慧+,吴斌   

  1. 太原科技大学电子信息工程学院
  • 作者简介:
    卫少萌(1997-),男,山西晋城人,硕士研究生,研究方向:复杂系统故障预测与健康管理,E-mail:wsm1537@163.com;

    张江民(1996-),男,山西运城人,硕士研究生,研究方向:复杂系统故障预测与健康管理,E-mail:S20190546@stu.tyust.edu.cn;

    +石慧(1979-),女,山西太原人,教授,博士,博士生导师,研究方向:信号及信号处理、物联网环境下的复杂系统故障预测与健康管理等,通讯作者,E-mail:huishi@tyust.edu.cn;

    吴斌(1994-),男,山西太原人,博士研究生,研究方向:复杂系统故障预测与健康管理,E-mail:B20201591004@stu.tyust.edu.cn。
  • 基金资助:
    国家自然科学基金资助项目(72071183);山西省重点研发计划资助项目(202202100401002,202202090301011,202202150401005);山西省自然科基金面上资助项目(20210302123206,202203021211205);山西省回国留学人员科研资助项目(2021-135);山西省留学回国人员科技活动择优资助项目(20220029)。

Abstract: In the context of industrial big data,it is important to utilize multiple sensors deployed in complex equipment to obtain condition monitoring data for remaining useful life prediction to ensure the reliability and safety of the system.A relative density high-dimensional kernel estimation remaining useful life prediction method based on multi-sensor data fusion was proposed to fuse multi-sensor monitoring data more effectively.On the basis of one-dimensional kernel density estimation,a nonparametric high-dimensional kernel estimation features fusion model based on multi-sensor data fusion was established.The idea of k-nearest-neighbor relative density was introduced into the selection of the window width of high-dimensional kernel estimation,which could adaptively select a more reasonable window width according to the sparsity of data.A relative density high-dimensional kernel diffeomorphism transformation method was established using a spatial mapping approach to solve the boundary shift problem of high-dimensional kernel estimation in prediction,which could improve prediction accuracy.The accuracy and effectiveness of the proposed method were verified through experimental analysis of the aero-engine dataset and the gearbox dataset.

Key words: remaining useful life prediction, high-dimensional kernel estimation, feature fusion, relative density, kernel diffeomorphism transformation

摘要: 在工业大数据的时代背景下,利用复杂系统中部署的多种传感器获取状态监测数据进行剩余寿命预测,对于保证系统的可靠性与安全性有着重要意义。为了更有效地融合多传感器监测数据,提出一种基于传感器数据融合的相对密度高维核估计剩余寿命预测方法。首先,建立基于多传感器数据融合的非参数高维核估计特征融合模型,并将K近邻相对密度的思想引入高维核估计窗宽的选择中,可以根据数据的稀疏性自适应地选择更合理的窗宽;其次,在剩余寿命预测模型上利用空间映射的方法建立自适应相对密度高维核微分同胚变换方法以解决高维核估计在预测中的边界偏移问题,从而提高剩余寿命预测结果的准确性。最后,分别对航空发动机数据集和齿轮箱数据集进行了实验分析,验证了所提方法的准确性和有效性。

关键词: 剩余寿命预测, 高维核估计, 特征融合, 相对密度, 核微分同胚变换

CLC Number: