Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (5): 1877-1888.DOI: 10.13196/j.cims.2021.0723

Previous Articles     Next Articles

Bearing residual life prediction method based on DRSN and optimized BiLSTM

WEN Jinghui,WU Rongsen,LI Shuaiyong+,HAN Mingxiu   

  1. Key Laboratory of Industrial Internet of Things and Networked Control,Ministry of Education,Chongqing University of Posts and Telecommunications
  • Online:2024-05-31 Published:2024-06-13
  • Supported by:
    Project supported by the National Key R&D Program,China(No.2018YFB1700200).

基于DRSN和优化BiLSTM的轴承剩余寿命预测方法

文井辉,伍荣森,李帅永+,韩明秀   

  1. 重庆邮电大学工业物联网与网络化控制教育部重点实验室
  • 作者简介:文井辉(1997-),女,重庆人,硕士研究生,研究方向:信息获取与处理,E-mail:wjh129@foxmail.com; 伍荣森(2000-),男,重庆人,本科生,研究方向:模式识别与智能感知,E-mail:617655673@qq.com; +李帅永(1987-),男,河南舞阳人,教授,博士,研究方向:信息获取与处理,通讯作者,E-mail:lishuaiyong@cqupt.edu.cn; 韩明秀(1997-),女,吉林四平人,硕士研究生,研究方向:信息获取与处理,E-mail:s190301028@stu.cqupt.edu.cn。
  • 基金资助:
    国家重点研发计划资助项目(2018YFB1700200)。

Abstract: In view of the problems of traditional bearing life prediction methods such as excessive dependence on prior knowledge,lack of adaptability and large prediction error caused by difficult extraction of degradation characteristics,a bearing residual life prediction method based on Deep Residual Shrinkage Network (DRSN) and Bidirectional Long-Short-Term Memory network (BiLSTM) with adaptive feature extraction was proposed.Without any prior knowledge,DRSN was used to automatically learn the characteristics of the original signal of the bearing,extract the degradation characteristics and construct the health index.Then,the number of hidden layer neurons and learning rate of BiLSTM were optimized by sparrow search algorithm,and the remaining life prediction model of bearing was established based on the optimized BiLSTM.The performance of health index extracted by DRSN,residual network and mean feature and different bearing residual life prediction models were compared.The experimental results showed that the health index extracted by DRSN network had the best performance,and the error of the optimized BiLSTM bearing residual life prediction model was the smallest.The root means square errors of the three bearing residual life prediction models based on the optimized BiLSTM,BiLSTM and Long-Short-Term Memory network (LSTM) were 1.41%,2.71% and 5.64% respectively,which verified the effectiveness of the proposed method.

Key words: deep residual shrinkage network, bidirectional long short term memory network, residual life prediction, sparrow search algorithm

摘要: 针对传统轴承寿命预测方法过度依赖先验知识、缺乏自适应性及退化特征难以提取导致的预测误差大的问题,提出一种自适应特征提取的基于深度残差收缩网络(DRSN)和双向长短时记忆网络(BiLSTM)的轴承剩余寿命预测方法。首先,无需任何先验知识利用DRSN对轴承原始信号进行自动特征学习,提取退化特征并构建健康指标;然后,采用麻雀搜索算法优化BiLSTM隐藏层神经元个数和学习率,基于优化的BiLSTM网络建立轴承剩余寿命预测模型;最后,进行对比实验验证:分别对比DRSN、残差网络、均值特征3种方法提取的健康指标的性能和不同的轴承剩余寿命寿命预测模型进行对比实验。实验结果表明DRSN网络提取的健康指标性能最优,同时基于优化后的BiLSTM轴承剩余寿命预测模型的误差最小,基于优化后BiLSTM、BiLSTM和长短时记忆网络(LSTM)的3种轴承剩余寿命预测模型的均方根误差分别为1.41%、2.71%、5.64%,验证了方法的有效性。

关键词: 深度残差收缩网络, 双向长短时记忆网络, 剩余寿命预测, 麻雀搜索算法

CLC Number: