计算机集成制造系统 ›› 2025, Vol. 31 ›› Issue (12): 4429-4440.DOI: 10.13196/j.cims.2024.0576

• • 上一篇    下一篇

TMPNet:融合Transformer与Mamba的机械零件三维点云精确分割方法

殷家兴,马宇馨,章皓,黄峰+,李其朋   

  1. 浙江科技大学机械与能源工程学院
  • 出版日期:2025-12-31 发布日期:2026-01-07
  • 作者简介:
    殷家兴(2000-),男,浙江丽水人,硕士研究生,研究方向:三维点云、点云分割、人工智能等,E-mail:863084180@qq.com;

    马宇馨(1999-),女,山西孝义人,硕士研究生,研究方向:机器视觉、目标检测、人工智能等,E-mail:1793509516@qq.com;

    章皓(1998-),男,浙江杭州人,硕士研究生,研究方向:深度学习、机械结构设计等,E-mail:1104386151@qq.com;

    +黄峰(1986-),男,浙江台州人,副教授,博士,研究方向:深度学习、智能制造、机电系统控制等,通讯作者,E-mail:hf@zust.edu.cn;

    李其朋(1977-),男,山东德州人,教授,博士,研究方向:智能制造、机电系统等,E-mail:liqipeng@zust.edu.cn。
  • 通讯作者简介:黄峰(1986-),男,浙江台州人,副教授,博士,研究方向:深度学习、智能制造、机电系统控制等,通讯作者,E-mail:hf@zust.edu.cn
  • 基金资助:
    浙江省‘尖兵'‘领雁'研发攻关计划资助项目(2025C01042)。

TMPNet:3D point cloud precise segmentation method for mechanical parts by integrating Transformer and Mamba

YIN Jiaxing,MA Yuxin,ZHANG Hao,HUANG Feng+,LI Qipeng   

  1. School of Mechanical and Energy Engineering,Zhejiang University of Science and Technology
  • Online:2025-12-31 Published:2026-01-07
  • Supported by:
    Project supported by the “Pioneer” and “Leading Goose” R&D Program of Zhejiang Province,China(No.2025C01042).

摘要: 在现代工业自动化中,点云分割是实现复杂场景理解的核心技术。然而,在堆叠机械零件的复杂场景中,现有分割方法往往受到点云密度不均、噪声干扰和遮挡严重等问题的限制,导致分割精度不佳。为解决这些挑战,本文提出了“TMPNet”,一种结合Transformer与Mamba的创新主干网络,用于堆叠机械零件的点云分割任务。TMPNet采用自适应曲线聚合排序策略,能够动态调整点云排序顺序,有效保留点云的全局和局部特征,提高模型对不同形状和结构的敏感度。此外,通过多维几何位置编码对点云的几何信息进行细致表征,进一步提升了模型在复杂堆叠场景下的分割精度与稳定性。实验结果表明,TMPNet在自建的堆叠机械零件点云分割数据集上显著提升了mIoU和mAcc,并在公开的S3DIS数据集上展现了良好的泛化能力。这种精确的点云分割为机器人自动抓取和后续的点云补全任务提供了更加可靠的基础。

关键词: 点云分割, 机械零件, 三维点云, 语义分割

Abstract: In modern industrial automation,point cloud segmentation is a key technology for understanding complex scenes.However,in complex scenarios involving stacked mechanical parts,existing segmentation methods often struggle with challenges such as uneven point cloud density,noise interference,and severe occlusion,resulting in suboptimal segmentation accuracy.To address these challenges,an innovative backbone network that combined Transformer and Mamba named TMPNet was proposed for point cloud segmentation of stacked mechanical parts.TMPNet employed an adaptive curve aggregation sorting strategy that dynamically adjusted the point cloud sorting order,effectively preserving both global and local features of the point cloud and enhancing the model's sensitivity to different shapes and structures.Additionally,the use of multidimensional geometric positional encoding enabled a more detailed representation of the geometric information within the point cloud,further improving the model's segmentation accuracy and stability in complex stacked scenarios.Experimental results demonstrated that TMPNet significantly improved mIoU and mAcc on our custom-built point cloud segmentation dataset of stacked mechanical parts and showed strong generalization capabilities on the public S3DIS dataset,which provided a more reliable foundation for robotic grasping and subsequent point cloud completion tasks.

Key words: point cloud segmentation, mechanical parts, 3D point cloud, semantic segmentation

中图分类号: