计算机集成制造系统 ›› 2025, Vol. 31 ›› Issue (12): 4418-4428.DOI: 10.13196/j.cims.2024.Z41

• • 上一篇    下一篇

SUV风格设计智能生成与预测:可解释性风格预测模型与StyleGAN3的整合效应

杨陈,林丽+,阳明庆,黄漆   

  1. 贵州大学机械工程学院
  • 出版日期:2025-12-31 发布日期:2026-01-07
  • 作者简介:
    杨陈(2000-),男,白族,贵州六盘水人,硕士研究生,研究方向:智能化产品设计、感性工学,E-mail:787927776@qq.com;

    +林丽(1973-),女,四川南充人,教授,博士生导师,研究方向:产品设计、感性工学、民间艺术艺术创意设计,通讯作者,E-mail:linlisongbai@163.com;

    阳明庆(1973-),男,贵州遵义人,副教授,硕士,研究方向:产品创新设计、认知交互设计,E-mail:272486463@qq.com;

    黄漆(1997-),男,贵州遵义人,硕士研究生,研究方向:感性工学、产品设计理论及方法,E-mail:1954758678@qq.com。
  • 通讯作者简介:林丽(1973-),女,四川南充人,教授,博士生导师,研究方向:产品设计、感性工学、民间艺术艺术创意设计,通讯作者,E-mail:linlisongbai@163.com
  • 基金资助:
    国家自然科学基金资助项目(52465024).

Intelligent generation and prediction of SUV style design:Integrating interpretable style prediction model with StyleGAN3

YANG Chen,LIN Li+,YANG Mingqing,HUANG Qi   

  1. School of Mechanical Engineering,Guizhou University
  • Online:2025-12-31 Published:2026-01-07
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.52465024).

摘要: 针对现有SUV风格设计智能生成研究中,生成风格不可解释及不可预测的问题,提出一种融合视觉认知、感性工学与人工智能技术的SUV汽车风格智能化生成框架,以实现高效且更精准地SUV风格设计生成。在SUV汽车图像数据集的视觉认知数据提取基础上,引入数量化Ⅰ类理论构建SUV造型要素与风格意象的映射关系,建立可解释性风格预测模型,奠定风格生成过程的可解释性基础。采用StyleGAN3生成多样化的SUV车型风格图谱,在可解释性风格预测模型及SUV关键造型要素检测的双约束下,形成具备可解释性且携载预设风格预测评分的生成方案。实验结果表明,该方法生成的图像FID50k_full值达7.12,造型要素检测精确率为92%,风格预测误差阈值(±0.5)内的符合率为82.5%。该智能化生成框架具备SUV汽车设计风格生成的可解释性及预测性,有效降低了设计师在概念设计阶段的工作负荷,提升设计结果的实用转化价值。

关键词: 产品感性设计, 感性工学, 风格语义, 产品风格设计

Abstract: To address the issues of unexplainability and unpredictability in existing intelligent SUV style generation research,an intelligent framework integrating visual cognition,Kansei engineering and AI technology was proposed for SUV style generation.Following the extraction of visual perception data from an SUV image dataset,quantification theory type I was introduced to establish an explainable mapping relationship between styling features and style imagery,thereby constructing an explainable style prediction model.Utilizing StyleGAN3 to generate a diverse stylistic spectrum of SUV models,and a generative framework was developed under the dual constraints of an interpretable style prediction model and the detection of key SUV styling elements,resulting in an interpretable solution that incorporates predefined style prediction scores.The results demonstrated that the generated images achieved an FID50k_full score of 7.12,a styling element detection accuracy of 92%,and an 82.5% compliance rate within the style prediction error threshold (±0.5).This intelligent framework provided interpretability and predictability for SUV automotive style generation,effectively reducing designers'workload in the conceptual design stage and enhancing the practical value of design outcomes.

Key words: Kansei product design, Kansei engineering, style semantics, product style design

中图分类号: