计算机集成制造系统 ›› 2025, Vol. 31 ›› Issue (12): 4708-4723.DOI: 10.13196/j.cims.2024.Z26

• • 上一篇    下一篇

融合时滞耦合机制与环境扰动补偿的制烟丝间歇过程质量预测方法

孙培桐1,朱明睿1,张祺1,鲍劲松1+,李培培2   

  1. 1.东华大学机械工程学院
    2.河南中烟工业责任有限公司
  • 出版日期:2025-12-31 发布日期:2026-01-09
  • 作者简介:
    孙培桐(2001-),男,河北保定人,硕士研究生,研究方向:智能制造系统、工业时间序列预测,E-mail:peitongsun01@gmail.com;

    朱明睿(1993-),女,湖北随州人,讲师,博士,研究方向:流程工业过程建模、工业时序数据分析,E-mail:mrzhu@dhu.edu.cn;

    张祺(1996-),女,江苏徐州人,博士研究生,研究方向:工业时间序列处理、故障诊断与预测,E-mail:zzqq0317@163.com;

    +鲍劲松(1972-),男,安徽庐江人,教授,博士,研究方向:工业智能、智能制造系统,通讯作者,E-mail:bao@dhu.edu.cn;

    李培培(1988-),女,河南安阳人,工程师,研究方向:卷烟工艺质量,E-mail:454368742@qq.com。
  • 通讯作者简介:鲍劲松(1972-),男,安徽庐江人,教授,博士,研究方向:工业智能、智能制造系统,通讯作者,E-mail:bao@dhu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52505544);中央高校基本科研业务费专项资金资助项目(2232025D-26)。

Quality prediction method for batch tobacco processing integrating time-delay coupling mechanisms and environmental disturbance compensation

SUN Peitong1,ZHU Mingrui1,ZHANG Qi1,BAO Jinsong1+,LI Peipei2   

  1. 1.School of Mechanical Engineering,Donghua University
    2.China Tobacco Henan Industrial Co.,Ltd.
  • Online:2025-12-31 Published:2026-01-09
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.52505544),and the Fundamental Research Funds for the Central Universities,China(No.2232025D-26).

摘要: 受工序间物料暂缓、多批次及环境温湿度影响,制烟丝间歇过程成品烟丝含水率预测面临时滞传递与动态扰动的双重挑战。为此,本文提出了一种融合时滞耦合机制与动态环境扰动的质量预测方法。首先通过批次化数据预处理,实现工艺参数与环境温湿度异构数据的时空对齐。进一步地,构建工艺环境双层建模框架:在工艺建模层面,采用基于关键工序节点拆分的串联预测架构,通过多头注意力机制(CNN-BiLSTM-MHA)混合网络深度挖掘跨工序参数间复杂时滞关系,实现历史工序质量指标的递推式传播;在环境建模层面,引入TimesNet时序分析框架,通过多周期时空张量变换捕捉温湿度波动对含水率的非线性时变影响。进一步提出动态加权集成策略,基于多元线性回归自适应优化工艺与环境模型的融合权重。实验表明,所提方法在RMSE(0.0113)、MAE(0.0091)和R2(0.9815)等指标上显著优于传统模型,验证了模型在间歇生产场景下对质量指标动态演变规律的表征能力。

关键词: 制烟丝间歇过程, 烟丝含水率预测, 递推式建模, TimesNet, 动态加权集成

Abstract: To address the challenges of time-delay transmission and dynamic disturbances caused by process-to-process material buffering,multiple batches,and environmental temperature and humidity in the intermittent production of cigarette shreds,a quality prediction method integrating time-delay coupling and dynamic environmental disturbances was proposed.Process parameters and environmental temperature and humidity data were temporally and spatially aligned through batch-based data preprocessing.A dual-layer modeling framework of process and environment was then constructed.In the process modeling layer,a serial prediction architecture based on key process node decomposition was adopted,and a Convolutional Neural Network—Bidirectional Long Short Term Memory—Multi-Head Attention(CNN-BiLSTM-MHA)hybrid network was used to deeply explore the complex time-delay relationships between cross-process parameters,enabling recursive propagation of historical process quality indicators.In the environmental modeling layer,the TimesNet time-series analysis framework was introduced to capture the nonlinear time-varying effects of temperature and humidity fluctuations on moisture content through multi-period spatiotemporal tensor transformations.A dynamic weighted integration strategy was further proposed,where the fusion weights of the process and environmental models were adaptively optimized using multiple linear regression.Experiments showed that the proposed method significantly outperformed traditional models in terms of RMSE(0.0113),MAE(0.0091),and R(0.9815),demonstrating its ability to characterize the dynamic evolution of quality indicators in intermittent production scenarios.

Key words: intermittent production of cigarette shreds, moisture content prediction of cigarette shreds, recursive modeling, TimesNet, dynamic weighted integration

中图分类号: