计算机集成制造系统 ›› 2025, Vol. 31 ›› Issue (12): 4724-4738.DOI: 10.13196/j.cims.2024.0364

• • 上一篇    下一篇

融合双重注意力机制与TCN的复杂生产过程工艺质量精准预测

李悦1,阴彦磊1+,易斌2   

  1. 1.昆明理工大学机电工程学院
    2.云南中烟工业有限公司技术中心
  • 出版日期:2025-12-31 发布日期:2026-01-09
  • 作者简介:
    李悦(2000-),女,宁夏银川人,硕士研究生,研究方向:机器学习、智能算法、工业大数据等,E-mail:2109493520@qq.com;

    +阴彦磊(1990-),男,河南安阳人,博士研究生,研究方向:智能制造、优化算法、知识服务等,通讯作者,E-mail:yinyanlei1990@163.com;

    易斌(1974-),男,云南玉溪人,高级工程师,硕士,研究方向:加工工艺与装备开发、数据挖掘等,E-mail:yxyibin@126.com。
  • 通讯作者简介:阴彦磊(1990-),男,河南安阳人,博士研究生,研究方向:智能制造、优化算法、知识服务等,通讯作者,E-mail:yinyanlei1990@163.com
  • 基金资助:
    国家自然科学基金资助项目(52065033);云南省重大科技资助项目(202302AD080001)。

Accurate prediction of process quality in complex production processes incorporating dual attention mechanism and TCN

LI Yue1,YIN Yanlei1+,YI Bin2   

  1. 1.Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology
    2.Technology Center,China Tobacco Yunnan Industrial Co.,Ltd.
  • Online:2025-12-31 Published:2026-01-09
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.52065033),and the Yunnan Provincial Major Scientific and Technological Projects,China(No.202302AD080001).

摘要: 复杂流程生产过程产品质量与工艺参数、设备运行参数、实时工况变化等都有关,产品质量与过程参数间存在复杂的非线性关系,为了提高产品质量预测准确性,本文提出一种融合双重注意力机制与时间卷积神经网络的复杂生产过程质量精准预测的方法。首先,基于生产过程中高频传感器采集的烘丝过程实时数据构建了多元时序数据集,分析了生产过程数据的关联耦合与时序特征;其次,采用基础TCN网络结合PReLU激活函数,捕捉工艺质量和特征变量间的长时序依赖关系,实现对多元时序数据集中全部序列的特征提取,有效提高了模型预测准确性,在此基础上,引入双重注意力机制确定影响产品质量的多元关键时序特征。最后,基于某制丝生产线薄板烘丝工序的20 107组实验数据进行多种模型训练和测试,结果表明,该模型的预测精度为0.988,均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)分别为0.000 4、0.021 2、0.016 8,相较于基础TCN,DA-TCN模型结构设计合理、预测精度高、泛化性强,为复杂生产过程产品质量精准预测提供了参考。

关键词: 复杂流程生产, 产品质量预测, 时间卷积神经网络, 双重注意力机制

Abstract: The quality of products in complex production processes is related to process parameters,equipment operating parameters,real-time operating conditions,etc.There is a complex nonlinear relationship between product quality and process parameters.To improve the accuracy of product quality prediction,a method for accurate prediction of complex production process quality that integrated dual attention mechanism and time convolutional neural network was proposed.A multi-variate temporal dataset was constructed based on real-time data collected by high-frequency sensors during the thin plate drying process,and the correlation coupling and temporal characteristics of the production process data were analyzed.The basic Temporal Convolutional Network(TCN)combined with the PReLU activation function was used to capture the long-term dependencies between process quality and feature variables,achieving feature extraction for all sequences in the multivariate time series dataset,effectively improving the accuracy of model prediction.On this basis,a dual attention mechanism was introduced to determine the multi-variate key time series features that affect product quality.Finally,multiple models were trained and tested based on 20 107 sets of experimental data from the thin plate drying process of a certain silk production line.The results showed that the goodness of fit(R2) of the model was 0.988,and the Mean Square Error(MSE),Root Mean Square Error(RMSE) and Mean Absolute Error(MAE) were 0.000 4,0.021 2,and 0.016 8 respectively.Compared with the basic TCN,the DA-TCN model had a reasonable structural design,high prediction accuracy and strong generalization,providing a reference for accurate prediction of product quality in complex production processes.

Key words: complex process production, product quality prediction, temporal convolutional network, dual attention mechanism

中图分类号: