计算机集成制造系统 ›› 2025, Vol. 31 ›› Issue (12): 4621-4632.DOI: 10.13196/j.cims.2024.Z17

• • 上一篇    下一篇

面向智能车间的多通道k-平行行排序问题

马豪杰1,张则强1,2+,何宗兴1,计丹1   

  1. 1.西南交通大学机械工程学院轨道交通运维技术与装备四川省重点实验室
    2.西南交通大学唐山研究院
  • 出版日期:2025-12-31 发布日期:2026-01-08
  • 作者简介:
    马豪杰(2001-),男,湖南湘潭人,硕士研究生,研究方向:设施布局与智能优化,E-mail:mhj7140092@163.com;

    +张则强(1978-),男,浙江东阳人,教授,博士,博士生导师,研究方向:制造系统与智能优化,通讯作者,E-mail:zzq_22@163.com;

    何宗兴(1998-),男,湖南郴州人,博士研究生,研究方向:设施布局与智能优化,E-mail:Xing608@my.swjtu.edu.cn;

    计丹(1998-),女,河南永城人,博士研究生,研究方向:设施布局与智能优化,E-mail:2845974756@qq.com。
  • 通讯作者简介:张则强(1978-),男,浙江东阳人,教授,博士,博士生导师,研究方向:制造系统与智能优化,通讯作者,E-mail:zzq_22@163.com
  • 基金资助:
    国家自然科学基金资助项目(52375268,52342505,72401239);教育部人文社会科学研究规划基金资助项目(23YJA630139);河北省自然科学基金资助项目(E2024105031);四川省科技计划资助项目(2025ZNSFSC0425,2024NSFSC1048,2024ZHCG0059)。

K-parallel row ordering problem with multi-handling passages for smart workshops

MA Haojie1,ZHANG Zeqiang1,2+,HE Zongxing1,JI Dan1   

  1. 1.Sichuan Provincial Key Laboratory of Technology and Equipment of Rail Transit Operation and Maintenance,School of Mechanical Engineering,Southwest Jiaotong University
    2.Tangshan Institute,Southwest Jiaotong University
  • Online:2025-12-31 Published:2026-01-08
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.52375268,52342505,72401239),the Foundation for Humanities,Social Sciences of Ministry of Education,China(No.23YJA630139),the Natural Science Foundation of Hebei Province,China(No.E2024105031),and the Sichuan Provincial Science and Technology Program,China(No.2025ZNSFSC0425,2024NSFSC1048,2024ZHCG0059).

摘要: 针对当前平行行排序问题中对多行布置和纵向物料搬运通道协同优化研究的不足,结合智能车间实际需求,提出面向智能车间的多通道k平行行排序问题。以物流成本为优化目标,构建混合整数线性规划模型,并运用Gurobi对小规模算例进行求解。针对大规模问题,设计了一种融合Q-learning的变邻域搜索遗传算法。该算法首先结合问题特点利用贪婪策略提升初始种群质量;针对问题特性设计了Q-learning的状态空间,然后引入多种邻域搜索操作构成动作空间,基于ε-greedy策略实现对解空间的自适应探索。运用该算法求解9~60规模的若干基准算例,结果对比验证了算法的优越性。最后应用所提算法求解实际车间问题,经数据对比验证了所提算法的实用性,为制造车间的数智化升级提供了理论方法与工程实践支持。

关键词: 智能车间, 设施布局, k-平行行排序问题, 物料搬运通道, Q-learning

Abstract: Aiming at the deficiency of the coordinated optimization between multi-row layouts and vertical material handling passages,a k-parallel row ordering problem with multi-handling passages for smart workshops was proposed.A mixed-integer linear programming model with a logistics cost minimization objective was established,where the Gurobi solver was employed for small-scale instances.For large-scale problems,a Q-learning-enhanced variable neighborhood search genetic algorithm was proposed.The algorithm enhanced initial population quality using a greedy strategy by integrating with the problem features,and the state space was designed,and designs the action space with multiple neighborhood search operations was introduced.An ε-greedy policy ensures adaptive exploration.Benchmark tests on 9~60 scale instances demonstrated the algorithm's superiority.Finally,practical workshop case validation confirmed the method's effectiveness in intelligent workshop layout optimization,providing theoretical and practical support for digital-intelligent transformation in manufacturing workshops.

Key words: smart workshop, facility layout, k-parallel row ordering problem, material handling passages, Q-learning

中图分类号: