计算机集成制造系统 ›› 2019, Vol. 25 ›› Issue (第8): 1946-1955.DOI: 10.13196/j.cims.2019.08.009

• 当期目次 • 上一篇    下一篇

基于多轴附加运动优化的成形磨削修形齿面扭曲消减方法

何坤1,李国龙2,杜彦斌1,商楠2   

  1. 1.重庆工商大学制造装备机构设计与控制重庆市重点实验室
    2.重庆大学机械传动国家重点实验室
  • 出版日期:2019-08-31 发布日期:2019-08-31
  • 基金资助:
    国家自然科学基金资助项目(51775071);重庆市自然科学基金资助项目(cstc2018jcyjAX0578);重庆市教委科学技术研究资助项目(KJQN201800804)。

Twist reduction method of forming grinding modified tooth surface based on multi-axis additional motion optimization

  • Online:2019-08-31 Published:2019-08-31
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.51775071),the Chongqing Municipal Natural Science Foundation,China(No.cstc2018jcyjAX0578),and the Science and Technology Research Program of Chongqing Municipal Education Commission,China(No.KJQN201800804).

摘要: 针对齿向修形斜齿轮成形磨削时产生的齿面扭曲误差,提出一种基于多轴附加运动优化的齿面扭曲误差消减方法。基于五轴联动数控成形磨齿机建立成形砂轮与齿轮的空间啮合坐标系,求解理论修形齿面及实际修形齿面在多个位置处的接触线;定量分析了x,y,c轴附加运动对齿廓斜率偏差的影响规律,以多轴附加运动代替常规x轴附加运动进行齿向修形,并借助遗传算法对各个位置处的多轴附加运动量进行联合优化,使实际修形齿面接触线与理论修形齿面接触线匹配,从而提高修形齿面的理论磨削精度。通过仿真分析及磨削实验证明,该方法可以有效消减齿面扭曲误差,提高修形齿面的成形磨削精度。

关键词: 成形磨削, 齿向修形, 齿面扭曲, 多轴附加运动优化, 遗传算法

Abstract: Aiming at the principle error caused by forming grinding of helical gears,an error reduction method based on multi-axis additional motion optimization was proposed.Based on the five-axis CNC forming grinding machine,a spatial meshing coordinate system was established,and the contact lines of theoretically modified flank and actual modified flank were solved.The impact on profile slope deviation of multi-axis additional motion was analyzed,and the normal single-axis additional motion was replaced by multi-axis additional motion.With the help of genetic algorithm,the multi-axis additional motion at each position was optimized to make the actual modified flank contact line and the theoretical modified flank contact line match,which improved the flank accuracy.Through the simulation and experiment,it was proved that the method could effectively reduce the flank twist and improve the overall precision of the flank.

Key words: form grinding, lead modification, tooth surface twist, multi-axis additional motion optimization, genetic algorithms

中图分类号: