Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (10): 3630-3641.DOI: 10.13196/j.cims.2024.S11

Previous Articles     Next Articles

Lightweight real-time defect detection model for aeronautical carbon fiber components driven by multi-dimensional collaborativeattention mechanism

MA Xubeng1,WU Xuanyu1,HU Bingtao2+,LI Yaonan2,SUN Zhenghao3,FENG Yixiong1,2,LI Chuanjiang4   

  1. 1.College of Mechanical Engineering,Guizhou University
    2.State Key Laboratory of Fluid Power and Mechatronic Systems,Zhejiang University
    3.Shanghai Academy of Spaceflight Technology
    4.State Key Laboratory of Public Big Data,Guizhou University
  • Online:2025-10-31 Published:2025-10-31
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.52130501,52105281),and the Key R&D Program of Zhejiang Province,China(No.2023C01214,2024C01029).

基于多维协同注意力机制的航空碳纤维构件缺陷轻量化实时检测模型

马徐蚌1,吴轩宇1,胡炳涛2+,李耀楠2,孙征昊3,冯毅雄1,2,李传江4   

  1. 1.贵州大学机械工程学院
    2.浙江大学流体动力基础件与机电系统全国重点实验室
    3.上海卫星装备研究所
    4.贵州大学省部共建公共大数据国家重点实验室
  • 作者简介:
    马徐蚌(2000-),男,回族,贵州六盘水人,硕士研究生,研究方向:计算机视觉等,E-mail:3146444194@qq.com;

    吴轩宇(1998-),男,湖南长沙人,特聘教授,博士,研究方向:产品数字化设计与智能制造等,E-mail:xuanyuwu@zju.edu.cn;

    +胡炳涛(1992-),男,山东烟台人,副研究员,博士,研究方向:产品设计理论与智能制造等,通讯作者,E-mail:hubingtao@zju.edu.cn;

    李耀楠(2000-),男,河南驻马店人,硕士研究,研究方向:计算机视觉等,E-mail:1687374924@qq.com;

    孙征昊(1985-),男,上海人,研究师,博士,研究方向:结构产品事业等,E-mail:sunzhh@163.com;

    冯毅雄(1975-),男,浙江东阳人,教授,博士,研究方向:数字化设计与智能制造等,E-mail:fyxtv@zju.edu.cn;

    李传江(1995-),男,山西临汾人,博士,研究方向:工业大数据、智能制造、工业5.0,E-mail:licj@gzu.edu.cn。
  • 基金资助:
    国家自然科学基金资助项目(52130501,52105281);浙江省重点研发计划资助项目(2023C01214,2024C01029)。

Abstract: To address the challenges of high computational demands and resource constraints in real-time defect detection of aerospace carbon fiber components,a lightweight object detection framework was developed.An improved model based on the YOLOv11n framework was constructed by integrating Deformable Convolution (DCNv4) into the backbone network to enhance defect shape perception.A DualConv structure was employed to improve feature extraction efficiency,while the C3K2_MCA module incorporating a multi-dimensional collaborative attention mechanism was designed to strengthen multi-scale feature correlation and representation.Experimental results demonstrated that the improved model had achieved enhancements in both mAP and precision,along with a 20.6% increase in detection speed and a 23% reduction in computational resource consumption.This method effectively balanced detection accuracy,efficiency and computational cost,making it well-suited for real-time defect detection of carbon fiber components.

Key words: carbon fiber components, defect detection, YOLOv11n framework, multi-dimensional collaborative attention mechanism, lightweight model

摘要: 针对航空航天领域碳纤维构件缺陷实时检测高算力需求与资源受限难题,提出基于多维协同注意力优化机制的轻量化目标检测框架。基于YOLOv11n框架构建改进模型,在主干网络引入DCNv4可变形卷积增强缺陷形态的感知能力,采用DualConv卷积核结构提升特征提取效率,并设计融合多维协作注意力机制的C3K2_MCA模块,以强化多尺度特征的关联与表达能力。实验结果表明,改进模型的准确率与精度均得到了提升,并实现了20.6%的检测速度提升与23%的算力资源压缩。该方法在精度、检测效率与计算成本之间达成了最优平衡,有效满足了碳纤维构件缺陷实时检测的工程需求。针对航空航天领域碳纤维构件缺陷实时检测高算力需求与资源受限难题,提出基于多维协同注意力优化机制的轻量化目标检测框架。基于YOLOv11n框架构建改进模型,在主干网络引入DCNv4可变形卷积增强缺陷形态的感知能力,采用DualConv卷积核结构提升特征提取效率,并设计融合多维协作注意力机制的C3K2_MCA模块,以强化多尺度特征的关联与表达能力。实验结果表明,改进模型的准确率与精度均得到了提升,并实现了20.6%的检测速度提升与23%的算力资源压缩。该方法在精度、检测效率与计算成本之间达成了最优平衡,有效满足了碳纤维构件缺陷实时检测的工程需求。

关键词: 碳纤维构件, 缺陷检测, YOLOv11n框架, 多维协作注意力机制, 轻量化模型

CLC Number: