Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (2): 499-511.DOI: 10.13196/j.cims.2023.0698

Previous Articles     Next Articles

Crack detection algorithm for forging surface based on cross-scale feature extraction

ZHANG Yue1,2,3,ZHANG Shang1,2,3,WANG Hengtao3,4+,ZHANG Zhaoyang5,XU Huan1,2,3,XIONG Ruoyan1,2,3   

  1. 1.Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering,China Three Gorges University
    2.Hubei Province Engineering Technology Research Center for Construction Quality Testing Equipment,China Three Gorges University
    3.College of Computer and Information Technology,China Three Gorges University
    4.College of Economics and Management,China Three Gorges University
    5.College of Electrical Engineering & New Energy,China Three Gorges University
  • Online:2025-02-28 Published:2025-03-06
  • Supported by:
    Project supported by the National Innovation and Entrepreneurship Training Program,China(No.202011075013,202111075012).

基于跨尺度特征提取的锻件表面裂纹检测算法

张岳1,2,3,张上1,2,3,王恒涛3,4+,张朝阳5,许欢1,2,3,熊偌炎1,2,3   

  1. 1.三峡大学水电工程智能视觉监测湖北省重点实验室
    2.三峡大学湖北省建筑质量检测装备工程技术研究中心
    3.三峡大学计算机与信息学院
    4.三峡大学经济与管理学院
    5.三峡大学电气与新能源学院
  • 作者简介:
    张岳(1998-),男,山西大同人,硕士研究生,研究方向:图像识别、智能制造,E-mail:zhangyue980202@ctgu.edu.cn;

    张上(1979-),男,湖北宜昌人,副教授,博士,研究方向:物联网、计算机应用、图像处理,E-mail:zhangshang@ctgu.edu.cn;

    +王恒涛(1996-),男,山东潍坊人,博士研究生,研究方向:深度学习、边缘计算,通讯作者,E-mail:wht@ctgu.edu.cn;

    张朝阳(1996-),男,河南商丘人,硕士研究生,研究方向:计算机视觉、目标检测,E-mail:ZZY@ctgu.edu.cn;

    许欢(1998-),男,湖北荆门人,硕士研究生,研究方向:目标检测、嵌入式技术,E-mail:xu_huan@ctgu.edu.cn;

    熊偌炎(2000-),男,湖北宜昌人,硕士研究生,研究方向:计算机视觉、目标跟踪,E-mail:ryxiong2022@163.com。
  • 基金资助:
    国家级大学生创新创业训练计划资助项目(202011075013,202111075012)。

Abstract: Forging surface cracks are harmful with low detection efficiency.To solve the problems existing in the traditional artificial magnetic particle inspection of forging crack scene,a forging surface crack real-time detection algorithm was proposed.The magnetic particle inspection images from the flaw detection workshop in the heavy truck steering knuckle production line were collected,and a forging surface crack dataset was produced.A lightweight multi-scale convolution module named LMSConv was proposed to achieve single-module cross-scale feature extraction.Large Separable Kernel Attention Spatial Pyramid Pooling-Fast(LSKA-SPPF)model was  proposed to further enhance the overall cross-scale feature fusion capability.The Bbox loss function was changed to Focal EIoU to improve the anchor box regression accuracy.Experimental results on forging surface crack dataset and NEU-DET dataset showed that the proposed algorithm had high detection accuracy and low complexity.Compared with other mainstream one-stage object detection algorithms,the proposed algorithm reduced the missed detection rate and false detection rate with high robustness,which could fulfill the needs of forgings cracks inspection.

Key words: surface defect detection, cross-scale feature, forging cracks, one-stage object detection

摘要: 锻件表面裂纹危害性大,检测效率低,为解决传统人工磁粉检测锻件裂纹场景中存在的问题,提出一种锻件表面裂纹实时检测算法。首先采集重卡转向节生产流水线中探伤车间的磁粉检测图像,制作锻件表面裂纹数据集;然后提出轻量多尺度卷积模块LMSConv,实现单模块跨尺度特征提取,同时提出大型可分离内核注意力快速空间金字塔池化模块LSKA-SPPF,进一步加强整体跨尺度特征融合能力;最后,更改Bbox损失函数为Focal EIoU,以提高锚框回归精度。锻件表面裂纹数据集与NEU-DET数据集上的实验结果表明算法检测精度高,复杂度低,对比其他主流单阶段目标检测算法,所提算法漏检率和误检率降低,具有较强的鲁棒性,能够满足锻件裂纹检测的需要。

关键词: 表面缺陷检测, 跨尺度特征, 锻件裂纹, 单阶段目标检测

CLC Number: