Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (8): 3046-3056.DOI: 10.13196/j.cims.2023.0168

Previous Articles     Next Articles

Residual life prediction method for high-pressure common rail injectors based on hierarchical weighted permutation entropy and IGOA-BiLSTM

QU Beijia1,GAO Xianli2,JIA Baofu2,KE Yun1+,YAO Chong1,SONG Enzhe1   

  1. 1.Yantai Research Institute,Harbin Engineering University
    2.Zichai Power Co.,Ltd.
  • Online:2025-08-31 Published:2025-09-08
  • Supported by:
    Project supported by the High Technology Ship Research Foundation,China(No.KY10300190077),and the Fundamental Research Funds for the Central Universities,China(No.GK2030260255).

基于层次加权排列熵与IGOA-BiLSTM的高压共轨喷油器剩余寿命预测方法

屈蓓佳1,高先理2,贾宝富2,柯赟1+,姚崇1,宋恩哲1   

  1. 1.哈尔滨工程大学烟台研究院
    2.淄柴动力有限公司
  • 作者简介:
    屈蓓佳(1999-),男,河南郑州人,硕士研究生,研究方向:健康管理与故障诊断,E-mail:1345326274@qq.com;

    高先理(1978-),男,山东淄博人,副高级工程师,研究方向:柴油机健康管理,E-mail:13583376336@163.com;

    贾宝富(1981-),男,山东淄博人,副高级工程师,研究方向:柴油机信号处理,E-mail:jiabaofu@163.com;

    +柯赟(1994-),男,湖南常德人,助理研究员,博士,研究方向:健康管理与故障诊断,通讯作者,E-mail:keyun@hrbeu.edu.cn;

    姚崇(1982-),男,黑龙江哈尔滨人,教授,博士,研究方向:柴油机及气体燃料发动机电子控制技术,E-mail:yaochong@hrbeu.edu.cn;

    宋恩哲(1973-),男,黑龙江哈尔滨人,研究员,博士,研究方向:船舶动力系统智能控制,E-mail:sez2005@hrbeu.edu.cn。
  • 基金资助:
    高技术船舶科研资助项目(KY10300190077);中央高校基本科研业务费专项资金资助项目(GK2030260255)。

Abstract: Aiming at the low prediction accuracy of the remaining life of high-pressure common rail injectors caused by improper selection of prediction model parameters,a Bidirectional Long Short Term Memory network (BiLSTM) based on Hierarchical Weighted Permutation Entropy (HWPE) and Improved Grasshopper Optimization Algorithm (IGOA) was proposed for the remaining life prediction method of high-pressure common rail injectors.Since HWPE can fully consider the high-frequency and low-frequency information of time series,the HWPE of the whole life cycle data was extracted to construct the Health Index (HI);to solve the problem of difficulty in selecting the optimal parameters of BiLSTM,an IGOA was proposed.By introducing the chaos strategy,the diversity and randomness of the initial population was enriched,the linear factor was reconstructed to enhance the ability of global search and local development,and the migration strategy was introduced to improve the quality of position update and adaptively obtain the optimal parameter combination of BiLSTM.Finally,the HWPE and the health index were used as the input and output of the IGOA-BiLSTM model for training and testing,and the output HI was fitted to the life degradation curve and the failure point was predicted to realize the remaining life prediction of the injector.Through comparative analysis with other commonly used methods,IGOA had better performance in parameter optimization,and the proposed remaining life prediction method had higher prediction accuracy.

Key words: residual life prediction, hierarchical weighted permutation entropy, improved grasshopper optimization algorithm, bi-directional long short term memory networks, high pressure common rail injectors

摘要: 针对预测模型参数选取不当而导致高压共轨喷油器剩余寿命预测精度较低的问题,提出一种基于层次加权排列熵(HWPE)与改进蝗虫优化算法(IGOA)优化双向长短时记忆网络(BiLSTM)的高压共轨喷油器剩余寿命预测方法。首先,由于HWPE能够充分考虑时间序列高频和低频信息,提取全寿命周期数据的HWPE构建健康度指标(HI);然后,针对BiLSTM最优参数选取困难的问题,提出了一种改进蝗虫优化算法,通过引入混沌策略以丰富初始种群的多样性和随机性,重构线性因子增强全局搜索和局部开发的能力,并引入迁徙策略提高位置更新的质量,自适应地获取BiLSTM最优参数组合;最后,将HWPE与健康度指标分别作为IGOA-BiLSTM模型的输入输出进行训练测试,将输出的HI拟合寿命退化曲线并预测失效点,实现喷油器的剩余寿命预测。通过与其它常用方法对比分析,IGOA在参数寻优方面性能更好,所提出剩余寿命预测方法具有更高的预测精度。

关键词: 剩余寿命预测, 层次加权排列熵, 改进蝗虫优化算法, 双向长短时记忆网络, 高压共轨喷油器

CLC Number: