Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (8): 2999-3010.DOI: 10.13196/j.cims.2023.0035

Previous Articles     Next Articles

Ball screw anomaly monitoring based on convolutional variational autoencoder

WEN Juan1,2,WANG Wuyan1,ZHENG Lei1,PAN Bosong1   

  1. 1.College of Mechanical Engineering,Zhejiang University of Technology
    2.Hengfengtai Precision Machinery Co.,Ltd.
  • Online:2025-08-31 Published:2025-09-08
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.51475425),the Science and Technology Program of “JieBangGuaShuai” of Shaoxing City,China(No.2021B41006),and the Postdoctoral Science Preferential Funding of Zhejiang Province,China(No.273426).

基于卷积变分自编码器的滚珠丝杠副异常监测

文娟1,2,王午炎1,郑磊1,潘柏松1   

  1. 1.浙江工业大学机械工程学院
    2.恒丰泰精密机械股份有限公司
  • 作者简介:
    文娟(1990-),女,湖南邵阳人,讲师,博士,研究方向:故障诊断与寿命预测,E-mail:juanwen@zjut.edu.cn;

    王午炎(1998-),男,浙江台州人,硕士研究生,研究方向:故障诊断与状态监测,E-mail:459667675@qq.com;

    郑磊(1995-),男,浙江湖州人,硕士研究生,研究方向:可靠性分析方法应用与算法,E-mail:1026969225@qq.com;

    潘柏松(1968-),男,浙江温岭人,教授,博士,博士生导师,研究方向:可靠性分析与设计方法、智能制造装备,E-mail:panbsz@zjut.edu.cn。
  • 基金资助:
    国家自然科学基金资助项目(51475425);绍兴市“揭榜挂帅”制科技资助项目(2021B41006);浙江省博士后科研项目择优资助项目(273426)。

Abstract: To solve the fault data restriction problem in the ball screw condition monitoring,a ball screw anomaly monitoring method was proposed based on the Convolutional Variational Autoencoder (CNVAE) and the dynamic kernel density estimation model.The one-dimensional convolutional neural network was used to construct the variational autoencoder model,and it was trained by the normal vibration data of the ball screw collected in the early stage.Hence,a CNVAE model capable of reconstructing the normal samples could be learned.Then,the real-time signals were input into the CNVAE model,and the reconstruction error could be obtained,which was used as a health indicator to represent the degradation state of the ball screw.With a sliding window on the time scale,the reconstruction errors in different time periods were input into the kernel density estimation model,and the ball screw anomaly could be automatically detected through observing the probability distribution variation of the reconstruction errors in the sliding window.Experimental results showed that the proposed method could recognize the ball screw degradation stage effectively,characterize the deterioration evolution process and detect the abnormality earlier than traditional methods.

Key words: anomaly monitoring, convolutional variational autoencoder, kernel density estimation, ball screw, degradation stage identification

摘要: 为解决滚珠丝杠副状态监测中面临的异常状态数据缺少问题,基于卷积变分自编码器(CNVAE)和动态核密度估计模型,提出一种无需故障数据的滚珠丝杠副异常监测方法。首先,采用一维卷积神经网络构建变分自编码器,以早期正常阶段采集的信号作为输入,训练得到能够对正常数据进行重构的CNVAE模型。然后,将实时信号输入CNVAE模型中得到重构误差,作为表征滚珠丝杠副退化状态的健康指标。最后,采用一个在时间尺度上滑动的窗口选取不同时间段内的重构误差构成时间序列,输入核密度估计模型中,通过观测滑动窗口内重构误差的概率分布变化自动判定滚珠丝杠副是否出现异常。实验结果表明,提出方法能够区分滚珠丝杠副的不同退化阶段,表征滚珠丝杠副的退化演变过程,相比于传统方法能够更早地检测到滚珠丝杠副的异常。

关键词: 异常监测, 卷积变分自编码器, 核密度估计, 滚珠丝杠副, 退化阶段识别

CLC Number: