Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (8): 2772-2785.DOI: 10.13196/j.cims.2024.0456

Previous Articles     Next Articles

Path optimization for collaborative robots based on segmented adaptive Gaussian noise dispersion

LI Xiumin1,ZHOU Yong1+,HU Kaixiong1,LI Weidong2   

  1. 1.School of Transportation and Logistics Engineering,Wuhan University of Technology
    2.School of Mechanical Engineering,Shanghai University of Technology
  • Online:2025-08-31 Published:2025-09-04
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.51975444).

基于分段自适应高斯噪声发散的协作机器人路径优化

李修民1,周勇1+,胡楷雄1,李卫东2   

  1. 1.武汉理工大学交通与物流工程学院
    2.上海理工大学机械工程学院
  • 作者简介:
    李修民(1999-),男,福建厦门人,硕士研究生,研究方向:人机协作,E-mail:lixiumin@whut.edu.cn;

    +周勇(1973-),男,湖北汉川人,副教授,博士,博士生导师,研究方向:机器人技术及应用、物流装备协同作业调度与智能化、3D打印/扫描技术等,通讯作者,E-mail:zhouyong@whut.edu.cn;

    胡楷雄(1985-),男,湖北武汉人,副教授,博士,硕士生导师,研究方向:智能制造、材料分析测试、材料制备与加工,E-mail:kaixiong.hu@whut.edu.cn;

    李卫东(1969-),男,陕西西安人,教授,博士,博士生导师,研究方向:机器人应用、可持续再制造、人工智能等,E-mail:weidongli@usst.edu.cn。
  • 基金资助:
    国家自然科学基金资助项目(51975444)。

Abstract: The quality of regression path in collaborative robot teaching learning is limited by the distribution of teaching trajectories,and improper preprocessing may lead to overfitting of regression path or loss of task features.A path optimization strategy for segmented adaptive Gaussian noise divergence was proposed to address this issue.Considering the distribution differences of teaching trajectory various parts,a trajectory segmentation method based on feature driven clustering was proposed to divide the teaching trajectory into multiple task feature segments.To improve the distribution of the teaching trajectory and enhance the quality of the regression path,a optimization model of multi-dimensional Gaussian noise parameter was built to select appropriate divergence parameters for each feature segment.The proposed method was experimentally validated with the teaching trajectories collected by the UR5 robot,and the similarity,the feature preservation and the smoothness of the regression paths were evaluated.The results showed that the optimized regression path maintained a high degree of similarity with the original teaching trajectories as a whole.At the same time,while retaining the task features of the original trajectories,the twists and redundancies caused by adverse features were reduced,and the smoothness was further improved.

Key words: collaborative robot, learning from demonstration, trajectory segmentation, Gaussian noise divergence, path optimization

摘要: 协作机器人示教学习的回归路径质量受限于示教轨迹的分布,不当的预处理可能导致回归路径过拟合或任务特征丢失。针对此问题,提出了一种分段自适应高斯噪声发散的路径优化策略。首先,考虑到示教轨迹各部分的分布差异,提出一种基于特征驱动聚类的轨迹段分割方法将示教轨迹分割成多个任务特征段。其次,构建了多维高斯噪声参数优化模型,为每个特征段选取适当的发散参数,以改善示教轨迹的分布,进而提高回归路径的质量。最后,通过UR5机器人采集的示教轨迹对所提出的方法进行了实验验证,评估了回归路径的相似性、特征保留和平滑性。结果表明,经过优化后得到的回归路径整体上与原始示教轨迹保持了较高的相似性,同时在保留原始轨迹的任务特征的基础上,减少了由于不利特征影响而出现的曲折和冗余,平滑性得到进一步提高。

关键词: 协作机器人, 示教学习, 轨迹分割, 高斯噪声发散, 路径优化

CLC Number: