Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (7): 2499-2514.DOI: 10.13196/j.cims.2023.0106

Previous Articles     Next Articles

Multi-objective discrete workshop energy saving scheduling based on improved MLEA algorithm

GU Wenbin+,GUO Zhenyang,LIU Siqi,YUAN Minghai,PEI Fengque   

  1. College of Mechanical and Electrical Engineering,Hohai University
  • Online:2025-07-31 Published:2025-08-05
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.51875171),the General Program of Natural Science Foundation of Jiangsu Province,China (No.BK20221231,BK20201162),the Ministry of Education Humanities and Social Science Planning Fund,China (No.21YJA630111),and the Science and Technology Program of Changzhou City,China (No.CM20223014).

基于改进MLEA算法的多目标离散车间节能调度

顾文斌+,郭镇洋,刘斯麒,苑明海,裴凤雀   

  1. 河海大学机电工程学院
  • 作者简介:
    +顾文斌(1980-),男,江苏连云港人,副教授,博士,硕士生导师,研究方向:智能制造系统建模、智能优化调度、人工智能和智能控制等,通讯作者,E-mail:20021592@hhu.edu.cn;

    郭镇洋(1999-),男,河南商丘人,硕士研究生,研究方向:离散车间智能优化调度,E-mail:1097014577@qq.com;

    刘斯麒(1999-),男,湖北随州人,硕士研究生,研究方向:离散车间智能优化调度,E-mail:1340553865@qq.com;

    苑明海(1974-),男,山东安丘人,副教授,博士,研究方向:智能制造系统优化调度等,E-mail:ymhai@hhu.edu.cn;

    裴凤雀(1990-),男,河北石家庄人,博士,研究方向:智能制造系统建模、智能算法和大数据技术等,E-mail:fq_pei@hhu.edu.cn。
  • 基金资助:
    国家自然科学基金资助项目(51875171);江苏省自然科学基金面上项目(BK20221231,BK20201162);教育部人文社科规划基金资助项目(21YJA630111);常州市科技计划资助项目(CM20223014)。

Abstract: For the multi-objective discrete workshop energy-saving scheduling issue,a multi-neighborhood local improvement search method was suggested to optimize the maximum completion time and the total energy consumption of processing.In accordance with the peculiarities of the issue,OS self-assignment rules were implemented to lower the dimensionality of the solution space,and a machine greedy allocation mechanism was developed to balance the machine load.To optimize the initial solution's quality,a two-rule coordinated population initialization strategy based on the Pareto dominance relation was given.An adaptive global enhanced search operator and a local enhanced search operator were suggested,inspired by the feedback control mechanism of biological hormones.To enhance the algorithm's global search capability and local search depth,to grow the memory pool matrix and to prevent the algorithm from prematurely converging,the two operators were alternately executed.The superiority and stability of the proposed approach for addressing the multi-objective discrete workshop energy-saving scheduling issue were validated by comparative studies.

Key words: discrete workshop, energy-saving scheduling, machine greedy allocation mechanism, global enhanced search operator, local enhanced search operator

摘要: 针对多目标离散车间节能调度问题,以优化最大完工时间和加工总能耗为目标,提出一种多邻域局部增强搜索算法(MLEA)。根据问题特点,引入工序向量(OS)自指定规则对解空间降维,设计一种机器贪婪分配机制,以均衡机器负载,为优化初始解的质量,提出一种基于Pareto支配关系的双规则协调种群初始化方法。受生物激素反馈调节机制启发,提出自适应全局强化搜索算子和局部增强搜索算子,两种算子交替运行,以提高算法的全局搜索能力和局部搜索深度,增加记忆池矩阵,避免算法过早收敛。最后,通过对比实验,验证了所提算法在解决多目标离散车间节能调度问题上的优越性和稳定性。

关键词: 离散车间, 节能调度, 机器贪婪分配机制, 全局强化搜索算子, 局部增强搜索算子

CLC Number: